Annotation of rpl/lapack/lapack/zlaqps.f, revision 1.15

1.13      bertrand    1: *> \brief \b ZLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLAQPS + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqps.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqps.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqps.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
                     22: *                          VN2, AUXV, F, LDF )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            JPVT( * )
                     29: *       DOUBLE PRECISION   VN1( * ), VN2( * )
                     30: *       COMPLEX*16         A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZLAQPS computes a step of QR factorization with column pivoting
                     40: *> of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
                     41: *> NB columns from A starting from the row OFFSET+1, and updates all
                     42: *> of the matrix with Blas-3 xGEMM.
                     43: *>
                     44: *> In some cases, due to catastrophic cancellations, it cannot
                     45: *> factorize NB columns.  Hence, the actual number of factorized
                     46: *> columns is returned in KB.
                     47: *>
                     48: *> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] M
                     55: *> \verbatim
                     56: *>          M is INTEGER
                     57: *>          The number of rows of the matrix A. M >= 0.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] N
                     61: *> \verbatim
                     62: *>          N is INTEGER
                     63: *>          The number of columns of the matrix A. N >= 0
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] OFFSET
                     67: *> \verbatim
                     68: *>          OFFSET is INTEGER
                     69: *>          The number of rows of A that have been factorized in
                     70: *>          previous steps.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] NB
                     74: *> \verbatim
                     75: *>          NB is INTEGER
                     76: *>          The number of columns to factorize.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[out] KB
                     80: *> \verbatim
                     81: *>          KB is INTEGER
                     82: *>          The number of columns actually factorized.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in,out] A
                     86: *> \verbatim
                     87: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     88: *>          On entry, the M-by-N matrix A.
                     89: *>          On exit, block A(OFFSET+1:M,1:KB) is the triangular
                     90: *>          factor obtained and block A(1:OFFSET,1:N) has been
                     91: *>          accordingly pivoted, but no factorized.
                     92: *>          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
                     93: *>          been updated.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDA
                     97: *> \verbatim
                     98: *>          LDA is INTEGER
                     99: *>          The leading dimension of the array A. LDA >= max(1,M).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in,out] JPVT
                    103: *> \verbatim
                    104: *>          JPVT is INTEGER array, dimension (N)
                    105: *>          JPVT(I) = K <==> Column K of the full matrix A has been
                    106: *>          permuted into position I in AP.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] TAU
                    110: *> \verbatim
                    111: *>          TAU is COMPLEX*16 array, dimension (KB)
                    112: *>          The scalar factors of the elementary reflectors.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in,out] VN1
                    116: *> \verbatim
                    117: *>          VN1 is DOUBLE PRECISION array, dimension (N)
                    118: *>          The vector with the partial column norms.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in,out] VN2
                    122: *> \verbatim
                    123: *>          VN2 is DOUBLE PRECISION array, dimension (N)
                    124: *>          The vector with the exact column norms.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in,out] AUXV
                    128: *> \verbatim
                    129: *>          AUXV is COMPLEX*16 array, dimension (NB)
                    130: *>          Auxiliar vector.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in,out] F
                    134: *> \verbatim
                    135: *>          F is COMPLEX*16 array, dimension (LDF,NB)
                    136: *>          Matrix F**H = L * Y**H * A.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] LDF
                    140: *> \verbatim
                    141: *>          LDF is INTEGER
                    142: *>          The leading dimension of the array F. LDF >= max(1,N).
                    143: *> \endverbatim
                    144: *
                    145: *  Authors:
                    146: *  ========
                    147: *
                    148: *> \author Univ. of Tennessee 
                    149: *> \author Univ. of California Berkeley 
                    150: *> \author Univ. of Colorado Denver 
                    151: *> \author NAG Ltd. 
                    152: *
1.13      bertrand  153: *> \date September 2012
1.10      bertrand  154: *
                    155: *> \ingroup complex16OTHERauxiliary
                    156: *
                    157: *> \par Contributors:
                    158: *  ==================
                    159: *>
                    160: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                    161: *>    X. Sun, Computer Science Dept., Duke University, USA
                    162: *> \n
                    163: *>  Partial column norm updating strategy modified on April 2011
                    164: *>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
                    165: *>    University of Zagreb, Croatia.
                    166: *
                    167: *> \par References:
                    168: *  ================
                    169: *>
                    170: *> LAPACK Working Note 176
                    171: *
                    172: *> \htmlonly
                    173: *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> 
                    174: *> \endhtmlonly 
                    175: *
                    176: *  =====================================================================
1.1       bertrand  177:       SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
                    178:      $                   VN2, AUXV, F, LDF )
                    179: *
1.13      bertrand  180: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.1       bertrand  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13      bertrand  183: *     September 2012
1.1       bertrand  184: *
                    185: *     .. Scalar Arguments ..
                    186:       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
                    187: *     ..
                    188: *     .. Array Arguments ..
                    189:       INTEGER            JPVT( * )
                    190:       DOUBLE PRECISION   VN1( * ), VN2( * )
                    191:       COMPLEX*16         A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
                    192: *     ..
                    193: *
                    194: *  =====================================================================
                    195: *
                    196: *     .. Parameters ..
                    197:       DOUBLE PRECISION   ZERO, ONE
                    198:       COMPLEX*16         CZERO, CONE
                    199:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0,
                    200:      $                   CZERO = ( 0.0D+0, 0.0D+0 ),
                    201:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    202: *     ..
                    203: *     .. Local Scalars ..
                    204:       INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
                    205:       DOUBLE PRECISION   TEMP, TEMP2, TOL3Z
                    206:       COMPLEX*16         AKK
                    207: *     ..
                    208: *     .. External Subroutines ..
1.5       bertrand  209:       EXTERNAL           ZGEMM, ZGEMV, ZLARFG, ZSWAP
1.1       bertrand  210: *     ..
                    211: *     .. Intrinsic Functions ..
                    212:       INTRINSIC          ABS, DBLE, DCONJG, MAX, MIN, NINT, SQRT
                    213: *     ..
                    214: *     .. External Functions ..
                    215:       INTEGER            IDAMAX
                    216:       DOUBLE PRECISION   DLAMCH, DZNRM2
                    217:       EXTERNAL           IDAMAX, DLAMCH, DZNRM2
                    218: *     ..
                    219: *     .. Executable Statements ..
                    220: *
                    221:       LASTRK = MIN( M, N+OFFSET )
                    222:       LSTICC = 0
                    223:       K = 0
                    224:       TOL3Z = SQRT(DLAMCH('Epsilon'))
                    225: *
                    226: *     Beginning of while loop.
                    227: *
                    228:    10 CONTINUE
                    229:       IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
                    230:          K = K + 1
                    231:          RK = OFFSET + K
                    232: *
                    233: *        Determine ith pivot column and swap if necessary
                    234: *
                    235:          PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
                    236:          IF( PVT.NE.K ) THEN
                    237:             CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
                    238:             CALL ZSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
                    239:             ITEMP = JPVT( PVT )
                    240:             JPVT( PVT ) = JPVT( K )
                    241:             JPVT( K ) = ITEMP
                    242:             VN1( PVT ) = VN1( K )
                    243:             VN2( PVT ) = VN2( K )
                    244:          END IF
                    245: *
                    246: *        Apply previous Householder reflectors to column K:
1.9       bertrand  247: *        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**H.
1.1       bertrand  248: *
                    249:          IF( K.GT.1 ) THEN
                    250:             DO 20 J = 1, K - 1
                    251:                F( K, J ) = DCONJG( F( K, J ) )
                    252:    20       CONTINUE
                    253:             CALL ZGEMV( 'No transpose', M-RK+1, K-1, -CONE, A( RK, 1 ),
                    254:      $                  LDA, F( K, 1 ), LDF, CONE, A( RK, K ), 1 )
                    255:             DO 30 J = 1, K - 1
                    256:                F( K, J ) = DCONJG( F( K, J ) )
                    257:    30       CONTINUE
                    258:          END IF
                    259: *
                    260: *        Generate elementary reflector H(k).
                    261: *
                    262:          IF( RK.LT.M ) THEN
1.5       bertrand  263:             CALL ZLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
1.1       bertrand  264:          ELSE
1.5       bertrand  265:             CALL ZLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
1.1       bertrand  266:          END IF
                    267: *
                    268:          AKK = A( RK, K )
                    269:          A( RK, K ) = CONE
                    270: *
                    271: *        Compute Kth column of F:
                    272: *
1.9       bertrand  273: *        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**H*A(RK:M,K).
1.1       bertrand  274: *
                    275:          IF( K.LT.N ) THEN
                    276:             CALL ZGEMV( 'Conjugate transpose', M-RK+1, N-K, TAU( K ),
                    277:      $                  A( RK, K+1 ), LDA, A( RK, K ), 1, CZERO,
                    278:      $                  F( K+1, K ), 1 )
                    279:          END IF
                    280: *
                    281: *        Padding F(1:K,K) with zeros.
                    282: *
                    283:          DO 40 J = 1, K
                    284:             F( J, K ) = CZERO
                    285:    40    CONTINUE
                    286: *
                    287: *        Incremental updating of F:
1.9       bertrand  288: *        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**H
1.1       bertrand  289: *                    *A(RK:M,K).
                    290: *
                    291:          IF( K.GT.1 ) THEN
                    292:             CALL ZGEMV( 'Conjugate transpose', M-RK+1, K-1, -TAU( K ),
                    293:      $                  A( RK, 1 ), LDA, A( RK, K ), 1, CZERO,
                    294:      $                  AUXV( 1 ), 1 )
                    295: *
                    296:             CALL ZGEMV( 'No transpose', N, K-1, CONE, F( 1, 1 ), LDF,
                    297:      $                  AUXV( 1 ), 1, CONE, F( 1, K ), 1 )
                    298:          END IF
                    299: *
                    300: *        Update the current row of A:
1.9       bertrand  301: *        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**H.
1.1       bertrand  302: *
                    303:          IF( K.LT.N ) THEN
                    304:             CALL ZGEMM( 'No transpose', 'Conjugate transpose', 1, N-K,
                    305:      $                  K, -CONE, A( RK, 1 ), LDA, F( K+1, 1 ), LDF,
                    306:      $                  CONE, A( RK, K+1 ), LDA )
                    307:          END IF
                    308: *
                    309: *        Update partial column norms.
                    310: *
                    311:          IF( RK.LT.LASTRK ) THEN
                    312:             DO 50 J = K + 1, N
                    313:                IF( VN1( J ).NE.ZERO ) THEN
                    314: *
                    315: *                 NOTE: The following 4 lines follow from the analysis in
                    316: *                 Lapack Working Note 176.
                    317: *
                    318:                   TEMP = ABS( A( RK, J ) ) / VN1( J )
                    319:                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
                    320:                   TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
                    321:                   IF( TEMP2 .LE. TOL3Z ) THEN
                    322:                      VN2( J ) = DBLE( LSTICC )
                    323:                      LSTICC = J
                    324:                   ELSE
                    325:                      VN1( J ) = VN1( J )*SQRT( TEMP )
                    326:                   END IF
                    327:                END IF
                    328:    50       CONTINUE
                    329:          END IF
                    330: *
                    331:          A( RK, K ) = AKK
                    332: *
                    333: *        End of while loop.
                    334: *
                    335:          GO TO 10
                    336:       END IF
                    337:       KB = K
                    338:       RK = OFFSET + KB
                    339: *
                    340: *     Apply the block reflector to the rest of the matrix:
                    341: *     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
1.9       bertrand  342: *                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**H.
1.1       bertrand  343: *
                    344:       IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
                    345:          CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-RK, N-KB,
                    346:      $               KB, -CONE, A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF,
                    347:      $               CONE, A( RK+1, KB+1 ), LDA )
                    348:       END IF
                    349: *
                    350: *     Recomputation of difficult columns.
                    351: *
                    352:    60 CONTINUE
                    353:       IF( LSTICC.GT.0 ) THEN
                    354:          ITEMP = NINT( VN2( LSTICC ) )
                    355:          VN1( LSTICC ) = DZNRM2( M-RK, A( RK+1, LSTICC ), 1 )
                    356: *
                    357: *        NOTE: The computation of VN1( LSTICC ) relies on the fact that 
                    358: *        SNRM2 does not fail on vectors with norm below the value of
                    359: *        SQRT(DLAMCH('S')) 
                    360: *
                    361:          VN2( LSTICC ) = VN1( LSTICC )
                    362:          LSTICC = ITEMP
                    363:          GO TO 60
                    364:       END IF
                    365: *
                    366:       RETURN
                    367: *
                    368: *     End of ZLAQPS
                    369: *
                    370:       END

CVSweb interface <joel.bertrand@systella.fr>