File:  [local] / rpl / lapack / lapack / zlantr.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:52 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZLANTR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLANTR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
   22: *                        WORK )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORM, UPLO
   26: *       INTEGER            LDA, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   WORK( * )
   30: *       COMPLEX*16         A( LDA, * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZLANTR  returns the value of the one norm,  or the Frobenius norm, or
   40: *> the  infinity norm,  or the  element of  largest absolute value  of a
   41: *> trapezoidal or triangular matrix A.
   42: *> \endverbatim
   43: *>
   44: *> \return ZLANTR
   45: *> \verbatim
   46: *>
   47: *>    ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   48: *>             (
   49: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   50: *>             (
   51: *>             ( normI(A),         NORM = 'I' or 'i'
   52: *>             (
   53: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   54: *>
   55: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   56: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   57: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   58: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] NORM
   65: *> \verbatim
   66: *>          NORM is CHARACTER*1
   67: *>          Specifies the value to be returned in ZLANTR as described
   68: *>          above.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] UPLO
   72: *> \verbatim
   73: *>          UPLO is CHARACTER*1
   74: *>          Specifies whether the matrix A is upper or lower trapezoidal.
   75: *>          = 'U':  Upper trapezoidal
   76: *>          = 'L':  Lower trapezoidal
   77: *>          Note that A is triangular instead of trapezoidal if M = N.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] DIAG
   81: *> \verbatim
   82: *>          DIAG is CHARACTER*1
   83: *>          Specifies whether or not the matrix A has unit diagonal.
   84: *>          = 'N':  Non-unit diagonal
   85: *>          = 'U':  Unit diagonal
   86: *> \endverbatim
   87: *>
   88: *> \param[in] M
   89: *> \verbatim
   90: *>          M is INTEGER
   91: *>          The number of rows of the matrix A.  M >= 0, and if
   92: *>          UPLO = 'U', M <= N.  When M = 0, ZLANTR is set to zero.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] N
   96: *> \verbatim
   97: *>          N is INTEGER
   98: *>          The number of columns of the matrix A.  N >= 0, and if
   99: *>          UPLO = 'L', N <= M.  When N = 0, ZLANTR is set to zero.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] A
  103: *> \verbatim
  104: *>          A is COMPLEX*16 array, dimension (LDA,N)
  105: *>          The trapezoidal matrix A (A is triangular if M = N).
  106: *>          If UPLO = 'U', the leading m by n upper trapezoidal part of
  107: *>          the array A contains the upper trapezoidal matrix, and the
  108: *>          strictly lower triangular part of A is not referenced.
  109: *>          If UPLO = 'L', the leading m by n lower trapezoidal part of
  110: *>          the array A contains the lower trapezoidal matrix, and the
  111: *>          strictly upper triangular part of A is not referenced.  Note
  112: *>          that when DIAG = 'U', the diagonal elements of A are not
  113: *>          referenced and are assumed to be one.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDA
  117: *> \verbatim
  118: *>          LDA is INTEGER
  119: *>          The leading dimension of the array A.  LDA >= max(M,1).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] WORK
  123: *> \verbatim
  124: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  125: *>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  126: *>          referenced.
  127: *> \endverbatim
  128: *
  129: *  Authors:
  130: *  ========
  131: *
  132: *> \author Univ. of Tennessee 
  133: *> \author Univ. of California Berkeley 
  134: *> \author Univ. of Colorado Denver 
  135: *> \author NAG Ltd. 
  136: *
  137: *> \date November 2011
  138: *
  139: *> \ingroup complex16OTHERauxiliary
  140: *
  141: *  =====================================================================
  142:       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  143:      $                 WORK )
  144: *
  145: *  -- LAPACK auxiliary routine (version 3.4.0) --
  146: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *     November 2011
  149: *
  150: *     .. Scalar Arguments ..
  151:       CHARACTER          DIAG, NORM, UPLO
  152:       INTEGER            LDA, M, N
  153: *     ..
  154: *     .. Array Arguments ..
  155:       DOUBLE PRECISION   WORK( * )
  156:       COMPLEX*16         A( LDA, * )
  157: *     ..
  158: *
  159: * =====================================================================
  160: *
  161: *     .. Parameters ..
  162:       DOUBLE PRECISION   ONE, ZERO
  163:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  164: *     ..
  165: *     .. Local Scalars ..
  166:       LOGICAL            UDIAG
  167:       INTEGER            I, J
  168:       DOUBLE PRECISION   SCALE, SUM, VALUE
  169: *     ..
  170: *     .. External Functions ..
  171:       LOGICAL            LSAME
  172:       EXTERNAL           LSAME
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           ZLASSQ
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          ABS, MAX, MIN, SQRT
  179: *     ..
  180: *     .. Executable Statements ..
  181: *
  182:       IF( MIN( M, N ).EQ.0 ) THEN
  183:          VALUE = ZERO
  184:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  185: *
  186: *        Find max(abs(A(i,j))).
  187: *
  188:          IF( LSAME( DIAG, 'U' ) ) THEN
  189:             VALUE = ONE
  190:             IF( LSAME( UPLO, 'U' ) ) THEN
  191:                DO 20 J = 1, N
  192:                   DO 10 I = 1, MIN( M, J-1 )
  193:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  194:    10             CONTINUE
  195:    20          CONTINUE
  196:             ELSE
  197:                DO 40 J = 1, N
  198:                   DO 30 I = J + 1, M
  199:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  200:    30             CONTINUE
  201:    40          CONTINUE
  202:             END IF
  203:          ELSE
  204:             VALUE = ZERO
  205:             IF( LSAME( UPLO, 'U' ) ) THEN
  206:                DO 60 J = 1, N
  207:                   DO 50 I = 1, MIN( M, J )
  208:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  209:    50             CONTINUE
  210:    60          CONTINUE
  211:             ELSE
  212:                DO 80 J = 1, N
  213:                   DO 70 I = J, M
  214:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  215:    70             CONTINUE
  216:    80          CONTINUE
  217:             END IF
  218:          END IF
  219:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  220: *
  221: *        Find norm1(A).
  222: *
  223:          VALUE = ZERO
  224:          UDIAG = LSAME( DIAG, 'U' )
  225:          IF( LSAME( UPLO, 'U' ) ) THEN
  226:             DO 110 J = 1, N
  227:                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  228:                   SUM = ONE
  229:                   DO 90 I = 1, J - 1
  230:                      SUM = SUM + ABS( A( I, J ) )
  231:    90             CONTINUE
  232:                ELSE
  233:                   SUM = ZERO
  234:                   DO 100 I = 1, MIN( M, J )
  235:                      SUM = SUM + ABS( A( I, J ) )
  236:   100             CONTINUE
  237:                END IF
  238:                VALUE = MAX( VALUE, SUM )
  239:   110       CONTINUE
  240:          ELSE
  241:             DO 140 J = 1, N
  242:                IF( UDIAG ) THEN
  243:                   SUM = ONE
  244:                   DO 120 I = J + 1, M
  245:                      SUM = SUM + ABS( A( I, J ) )
  246:   120             CONTINUE
  247:                ELSE
  248:                   SUM = ZERO
  249:                   DO 130 I = J, M
  250:                      SUM = SUM + ABS( A( I, J ) )
  251:   130             CONTINUE
  252:                END IF
  253:                VALUE = MAX( VALUE, SUM )
  254:   140       CONTINUE
  255:          END IF
  256:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  257: *
  258: *        Find normI(A).
  259: *
  260:          IF( LSAME( UPLO, 'U' ) ) THEN
  261:             IF( LSAME( DIAG, 'U' ) ) THEN
  262:                DO 150 I = 1, M
  263:                   WORK( I ) = ONE
  264:   150          CONTINUE
  265:                DO 170 J = 1, N
  266:                   DO 160 I = 1, MIN( M, J-1 )
  267:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  268:   160             CONTINUE
  269:   170          CONTINUE
  270:             ELSE
  271:                DO 180 I = 1, M
  272:                   WORK( I ) = ZERO
  273:   180          CONTINUE
  274:                DO 200 J = 1, N
  275:                   DO 190 I = 1, MIN( M, J )
  276:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  277:   190             CONTINUE
  278:   200          CONTINUE
  279:             END IF
  280:          ELSE
  281:             IF( LSAME( DIAG, 'U' ) ) THEN
  282:                DO 210 I = 1, N
  283:                   WORK( I ) = ONE
  284:   210          CONTINUE
  285:                DO 220 I = N + 1, M
  286:                   WORK( I ) = ZERO
  287:   220          CONTINUE
  288:                DO 240 J = 1, N
  289:                   DO 230 I = J + 1, M
  290:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  291:   230             CONTINUE
  292:   240          CONTINUE
  293:             ELSE
  294:                DO 250 I = 1, M
  295:                   WORK( I ) = ZERO
  296:   250          CONTINUE
  297:                DO 270 J = 1, N
  298:                   DO 260 I = J, M
  299:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  300:   260             CONTINUE
  301:   270          CONTINUE
  302:             END IF
  303:          END IF
  304:          VALUE = ZERO
  305:          DO 280 I = 1, M
  306:             VALUE = MAX( VALUE, WORK( I ) )
  307:   280    CONTINUE
  308:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  309: *
  310: *        Find normF(A).
  311: *
  312:          IF( LSAME( UPLO, 'U' ) ) THEN
  313:             IF( LSAME( DIAG, 'U' ) ) THEN
  314:                SCALE = ONE
  315:                SUM = MIN( M, N )
  316:                DO 290 J = 2, N
  317:                   CALL ZLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
  318:   290          CONTINUE
  319:             ELSE
  320:                SCALE = ZERO
  321:                SUM = ONE
  322:                DO 300 J = 1, N
  323:                   CALL ZLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
  324:   300          CONTINUE
  325:             END IF
  326:          ELSE
  327:             IF( LSAME( DIAG, 'U' ) ) THEN
  328:                SCALE = ONE
  329:                SUM = MIN( M, N )
  330:                DO 310 J = 1, N
  331:                   CALL ZLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
  332:      $                         SUM )
  333:   310          CONTINUE
  334:             ELSE
  335:                SCALE = ZERO
  336:                SUM = ONE
  337:                DO 320 J = 1, N
  338:                   CALL ZLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
  339:   320          CONTINUE
  340:             END IF
  341:          END IF
  342:          VALUE = SCALE*SQRT( SUM )
  343:       END IF
  344: *
  345:       ZLANTR = VALUE
  346:       RETURN
  347: *
  348: *     End of ZLANTR
  349: *
  350:       END

CVSweb interface <joel.bertrand@systella.fr>