File:  [local] / rpl / lapack / lapack / zlantr.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:08 2020 UTC (4 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLANTR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
   22: *                        WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORM, UPLO
   26: *       INTEGER            LDA, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   WORK( * )
   30: *       COMPLEX*16         A( LDA, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZLANTR  returns the value of the one norm,  or the Frobenius norm, or
   40: *> the  infinity norm,  or the  element of  largest absolute value  of a
   41: *> trapezoidal or triangular matrix A.
   42: *> \endverbatim
   43: *>
   44: *> \return ZLANTR
   45: *> \verbatim
   46: *>
   47: *>    ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   48: *>             (
   49: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   50: *>             (
   51: *>             ( normI(A),         NORM = 'I' or 'i'
   52: *>             (
   53: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   54: *>
   55: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   56: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   57: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   58: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] NORM
   65: *> \verbatim
   66: *>          NORM is CHARACTER*1
   67: *>          Specifies the value to be returned in ZLANTR as described
   68: *>          above.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] UPLO
   72: *> \verbatim
   73: *>          UPLO is CHARACTER*1
   74: *>          Specifies whether the matrix A is upper or lower trapezoidal.
   75: *>          = 'U':  Upper trapezoidal
   76: *>          = 'L':  Lower trapezoidal
   77: *>          Note that A is triangular instead of trapezoidal if M = N.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] DIAG
   81: *> \verbatim
   82: *>          DIAG is CHARACTER*1
   83: *>          Specifies whether or not the matrix A has unit diagonal.
   84: *>          = 'N':  Non-unit diagonal
   85: *>          = 'U':  Unit diagonal
   86: *> \endverbatim
   87: *>
   88: *> \param[in] M
   89: *> \verbatim
   90: *>          M is INTEGER
   91: *>          The number of rows of the matrix A.  M >= 0, and if
   92: *>          UPLO = 'U', M <= N.  When M = 0, ZLANTR is set to zero.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] N
   96: *> \verbatim
   97: *>          N is INTEGER
   98: *>          The number of columns of the matrix A.  N >= 0, and if
   99: *>          UPLO = 'L', N <= M.  When N = 0, ZLANTR is set to zero.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] A
  103: *> \verbatim
  104: *>          A is COMPLEX*16 array, dimension (LDA,N)
  105: *>          The trapezoidal matrix A (A is triangular if M = N).
  106: *>          If UPLO = 'U', the leading m by n upper trapezoidal part of
  107: *>          the array A contains the upper trapezoidal matrix, and the
  108: *>          strictly lower triangular part of A is not referenced.
  109: *>          If UPLO = 'L', the leading m by n lower trapezoidal part of
  110: *>          the array A contains the lower trapezoidal matrix, and the
  111: *>          strictly upper triangular part of A is not referenced.  Note
  112: *>          that when DIAG = 'U', the diagonal elements of A are not
  113: *>          referenced and are assumed to be one.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDA
  117: *> \verbatim
  118: *>          LDA is INTEGER
  119: *>          The leading dimension of the array A.  LDA >= max(M,1).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] WORK
  123: *> \verbatim
  124: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  125: *>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  126: *>          referenced.
  127: *> \endverbatim
  128: *
  129: *  Authors:
  130: *  ========
  131: *
  132: *> \author Univ. of Tennessee
  133: *> \author Univ. of California Berkeley
  134: *> \author Univ. of Colorado Denver
  135: *> \author NAG Ltd.
  136: *
  137: *> \date December 2016
  138: *
  139: *> \ingroup complex16OTHERauxiliary
  140: *
  141: *  =====================================================================
  142:       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  143:      $                 WORK )
  144: *
  145: *  -- LAPACK auxiliary routine (version 3.7.0) --
  146: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *     December 2016
  149: *
  150:       IMPLICIT NONE
  151: *     .. Scalar Arguments ..
  152:       CHARACTER          DIAG, NORM, UPLO
  153:       INTEGER            LDA, M, N
  154: *     ..
  155: *     .. Array Arguments ..
  156:       DOUBLE PRECISION   WORK( * )
  157:       COMPLEX*16         A( LDA, * )
  158: *     ..
  159: *
  160: * =====================================================================
  161: *
  162: *     .. Parameters ..
  163:       DOUBLE PRECISION   ONE, ZERO
  164:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  165: *     ..
  166: *     .. Local Scalars ..
  167:       LOGICAL            UDIAG
  168:       INTEGER            I, J
  169:       DOUBLE PRECISION   SUM, VALUE
  170: *     ..
  171: *     .. Local Arrays ..
  172:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
  173: *     ..
  174: *     .. External Functions ..
  175:       LOGICAL            LSAME, DISNAN
  176:       EXTERNAL           LSAME, DISNAN
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           ZLASSQ, DCOMBSSQ
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          ABS, MIN, SQRT
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186:       IF( MIN( M, N ).EQ.0 ) THEN
  187:          VALUE = ZERO
  188:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  189: *
  190: *        Find max(abs(A(i,j))).
  191: *
  192:          IF( LSAME( DIAG, 'U' ) ) THEN
  193:             VALUE = ONE
  194:             IF( LSAME( UPLO, 'U' ) ) THEN
  195:                DO 20 J = 1, N
  196:                   DO 10 I = 1, MIN( M, J-1 )
  197:                      SUM = ABS( A( I, J ) )
  198:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  199:    10             CONTINUE
  200:    20          CONTINUE
  201:             ELSE
  202:                DO 40 J = 1, N
  203:                   DO 30 I = J + 1, M
  204:                      SUM = ABS( A( I, J ) )
  205:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  206:    30             CONTINUE
  207:    40          CONTINUE
  208:             END IF
  209:          ELSE
  210:             VALUE = ZERO
  211:             IF( LSAME( UPLO, 'U' ) ) THEN
  212:                DO 60 J = 1, N
  213:                   DO 50 I = 1, MIN( M, J )
  214:                      SUM = ABS( A( I, J ) )
  215:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  216:    50             CONTINUE
  217:    60          CONTINUE
  218:             ELSE
  219:                DO 80 J = 1, N
  220:                   DO 70 I = J, M
  221:                      SUM = ABS( A( I, J ) )
  222:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  223:    70             CONTINUE
  224:    80          CONTINUE
  225:             END IF
  226:          END IF
  227:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  228: *
  229: *        Find norm1(A).
  230: *
  231:          VALUE = ZERO
  232:          UDIAG = LSAME( DIAG, 'U' )
  233:          IF( LSAME( UPLO, 'U' ) ) THEN
  234:             DO 110 J = 1, N
  235:                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  236:                   SUM = ONE
  237:                   DO 90 I = 1, J - 1
  238:                      SUM = SUM + ABS( A( I, J ) )
  239:    90             CONTINUE
  240:                ELSE
  241:                   SUM = ZERO
  242:                   DO 100 I = 1, MIN( M, J )
  243:                      SUM = SUM + ABS( A( I, J ) )
  244:   100             CONTINUE
  245:                END IF
  246:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  247:   110       CONTINUE
  248:          ELSE
  249:             DO 140 J = 1, N
  250:                IF( UDIAG ) THEN
  251:                   SUM = ONE
  252:                   DO 120 I = J + 1, M
  253:                      SUM = SUM + ABS( A( I, J ) )
  254:   120             CONTINUE
  255:                ELSE
  256:                   SUM = ZERO
  257:                   DO 130 I = J, M
  258:                      SUM = SUM + ABS( A( I, J ) )
  259:   130             CONTINUE
  260:                END IF
  261:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  262:   140       CONTINUE
  263:          END IF
  264:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  265: *
  266: *        Find normI(A).
  267: *
  268:          IF( LSAME( UPLO, 'U' ) ) THEN
  269:             IF( LSAME( DIAG, 'U' ) ) THEN
  270:                DO 150 I = 1, M
  271:                   WORK( I ) = ONE
  272:   150          CONTINUE
  273:                DO 170 J = 1, N
  274:                   DO 160 I = 1, MIN( M, J-1 )
  275:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  276:   160             CONTINUE
  277:   170          CONTINUE
  278:             ELSE
  279:                DO 180 I = 1, M
  280:                   WORK( I ) = ZERO
  281:   180          CONTINUE
  282:                DO 200 J = 1, N
  283:                   DO 190 I = 1, MIN( M, J )
  284:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  285:   190             CONTINUE
  286:   200          CONTINUE
  287:             END IF
  288:          ELSE
  289:             IF( LSAME( DIAG, 'U' ) ) THEN
  290:                DO 210 I = 1, N
  291:                   WORK( I ) = ONE
  292:   210          CONTINUE
  293:                DO 220 I = N + 1, M
  294:                   WORK( I ) = ZERO
  295:   220          CONTINUE
  296:                DO 240 J = 1, N
  297:                   DO 230 I = J + 1, M
  298:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  299:   230             CONTINUE
  300:   240          CONTINUE
  301:             ELSE
  302:                DO 250 I = 1, M
  303:                   WORK( I ) = ZERO
  304:   250          CONTINUE
  305:                DO 270 J = 1, N
  306:                   DO 260 I = J, M
  307:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  308:   260             CONTINUE
  309:   270          CONTINUE
  310:             END IF
  311:          END IF
  312:          VALUE = ZERO
  313:          DO 280 I = 1, M
  314:             SUM = WORK( I )
  315:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  316:   280    CONTINUE
  317:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  318: *
  319: *        Find normF(A).
  320: *        SSQ(1) is scale
  321: *        SSQ(2) is sum-of-squares
  322: *        For better accuracy, sum each column separately.
  323: *
  324:          IF( LSAME( UPLO, 'U' ) ) THEN
  325:             IF( LSAME( DIAG, 'U' ) ) THEN
  326:                SSQ( 1 ) = ONE
  327:                SSQ( 2 ) = MIN( M, N )
  328:                DO 290 J = 2, N
  329:                   COLSSQ( 1 ) = ZERO
  330:                   COLSSQ( 2 ) = ONE
  331:                   CALL ZLASSQ( MIN( M, J-1 ), A( 1, J ), 1,
  332:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  333:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  334:   290          CONTINUE
  335:             ELSE
  336:                SSQ( 1 ) = ZERO
  337:                SSQ( 2 ) = ONE
  338:                DO 300 J = 1, N
  339:                   COLSSQ( 1 ) = ZERO
  340:                   COLSSQ( 2 ) = ONE
  341:                   CALL ZLASSQ( MIN( M, J ), A( 1, J ), 1,
  342:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  343:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  344:   300          CONTINUE
  345:             END IF
  346:          ELSE
  347:             IF( LSAME( DIAG, 'U' ) ) THEN
  348:                SSQ( 1 ) = ONE
  349:                SSQ( 2 ) = MIN( M, N )
  350:                DO 310 J = 1, N
  351:                   COLSSQ( 1 ) = ZERO
  352:                   COLSSQ( 2 ) = ONE
  353:                   CALL ZLASSQ( M-J, A( MIN( M, J+1 ), J ), 1,
  354:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  355:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  356:   310          CONTINUE
  357:             ELSE
  358:                SSQ( 1 ) = ZERO
  359:                SSQ( 2 ) = ONE
  360:                DO 320 J = 1, N
  361:                   COLSSQ( 1 ) = ZERO
  362:                   COLSSQ( 2 ) = ONE
  363:                   CALL ZLASSQ( M-J+1, A( J, J ), 1,
  364:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  365:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  366:   320          CONTINUE
  367:             END IF
  368:          END IF
  369:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  370:       END IF
  371: *
  372:       ZLANTR = VALUE
  373:       RETURN
  374: *
  375: *     End of ZLANTR
  376: *
  377:       END

CVSweb interface <joel.bertrand@systella.fr>