File:  [local] / rpl / lapack / lapack / zlantb.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:08 2020 UTC (4 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLANTB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
   22: *                        LDAB, WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORM, UPLO
   26: *       INTEGER            K, LDAB, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   WORK( * )
   30: *       COMPLEX*16         AB( LDAB, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZLANTB  returns the value of the one norm,  or the Frobenius norm, or
   40: *> the  infinity norm,  or the element of  largest absolute value  of an
   41: *> n by n triangular band matrix A,  with ( k + 1 ) diagonals.
   42: *> \endverbatim
   43: *>
   44: *> \return ZLANTB
   45: *> \verbatim
   46: *>
   47: *>    ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   48: *>             (
   49: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   50: *>             (
   51: *>             ( normI(A),         NORM = 'I' or 'i'
   52: *>             (
   53: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   54: *>
   55: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   56: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   57: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   58: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] NORM
   65: *> \verbatim
   66: *>          NORM is CHARACTER*1
   67: *>          Specifies the value to be returned in ZLANTB as described
   68: *>          above.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] UPLO
   72: *> \verbatim
   73: *>          UPLO is CHARACTER*1
   74: *>          Specifies whether the matrix A is upper or lower triangular.
   75: *>          = 'U':  Upper triangular
   76: *>          = 'L':  Lower triangular
   77: *> \endverbatim
   78: *>
   79: *> \param[in] DIAG
   80: *> \verbatim
   81: *>          DIAG is CHARACTER*1
   82: *>          Specifies whether or not the matrix A is unit triangular.
   83: *>          = 'N':  Non-unit triangular
   84: *>          = 'U':  Unit triangular
   85: *> \endverbatim
   86: *>
   87: *> \param[in] N
   88: *> \verbatim
   89: *>          N is INTEGER
   90: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANTB is
   91: *>          set to zero.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] K
   95: *> \verbatim
   96: *>          K is INTEGER
   97: *>          The number of super-diagonals of the matrix A if UPLO = 'U',
   98: *>          or the number of sub-diagonals of the matrix A if UPLO = 'L'.
   99: *>          K >= 0.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] AB
  103: *> \verbatim
  104: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  105: *>          The upper or lower triangular band matrix A, stored in the
  106: *>          first k+1 rows of AB.  The j-th column of A is stored
  107: *>          in the j-th column of the array AB as follows:
  108: *>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  109: *>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
  110: *>          Note that when DIAG = 'U', the elements of the array AB
  111: *>          corresponding to the diagonal elements of the matrix A are
  112: *>          not referenced, but are assumed to be one.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDAB
  116: *> \verbatim
  117: *>          LDAB is INTEGER
  118: *>          The leading dimension of the array AB.  LDAB >= K+1.
  119: *> \endverbatim
  120: *>
  121: *> \param[out] WORK
  122: *> \verbatim
  123: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124: *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  125: *>          referenced.
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee
  132: *> \author Univ. of California Berkeley
  133: *> \author Univ. of Colorado Denver
  134: *> \author NAG Ltd.
  135: *
  136: *> \date December 2016
  137: *
  138: *> \ingroup complex16OTHERauxiliary
  139: *
  140: *  =====================================================================
  141:       DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  142:      $                 LDAB, WORK )
  143: *
  144: *  -- LAPACK auxiliary routine (version 3.7.0) --
  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147: *     December 2016
  148: *
  149:       IMPLICIT NONE
  150: *     .. Scalar Arguments ..
  151:       CHARACTER          DIAG, NORM, UPLO
  152:       INTEGER            K, LDAB, N
  153: *     ..
  154: *     .. Array Arguments ..
  155:       DOUBLE PRECISION   WORK( * )
  156:       COMPLEX*16         AB( LDAB, * )
  157: *     ..
  158: *
  159: * =====================================================================
  160: *
  161: *     .. Parameters ..
  162:       DOUBLE PRECISION   ONE, ZERO
  163:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  164: *     ..
  165: *     .. Local Scalars ..
  166:       LOGICAL            UDIAG
  167:       INTEGER            I, J, L
  168:       DOUBLE PRECISION   SUM, VALUE
  169: *     ..
  170: *     .. Local Arrays ..
  171:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
  172: *     ..
  173: *     .. External Functions ..
  174:       LOGICAL            LSAME, DISNAN
  175:       EXTERNAL           LSAME, DISNAN
  176: *     ..
  177: *     .. External Subroutines ..
  178:       EXTERNAL           ZLASSQ, DCOMBSSQ
  179: *     ..
  180: *     .. Intrinsic Functions ..
  181:       INTRINSIC          ABS, MAX, MIN, SQRT
  182: *     ..
  183: *     .. Executable Statements ..
  184: *
  185:       IF( N.EQ.0 ) THEN
  186:          VALUE = ZERO
  187:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  188: *
  189: *        Find max(abs(A(i,j))).
  190: *
  191:          IF( LSAME( DIAG, 'U' ) ) THEN
  192:             VALUE = ONE
  193:             IF( LSAME( UPLO, 'U' ) ) THEN
  194:                DO 20 J = 1, N
  195:                   DO 10 I = MAX( K+2-J, 1 ), K
  196:                      SUM = ABS( AB( I, J ) )
  197:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  198:    10             CONTINUE
  199:    20          CONTINUE
  200:             ELSE
  201:                DO 40 J = 1, N
  202:                   DO 30 I = 2, MIN( N+1-J, K+1 )
  203:                      SUM = ABS( AB( I, J ) )
  204:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  205:    30             CONTINUE
  206:    40          CONTINUE
  207:             END IF
  208:          ELSE
  209:             VALUE = ZERO
  210:             IF( LSAME( UPLO, 'U' ) ) THEN
  211:                DO 60 J = 1, N
  212:                   DO 50 I = MAX( K+2-J, 1 ), K + 1
  213:                      SUM = ABS( AB( I, J ) )
  214:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  215:    50             CONTINUE
  216:    60          CONTINUE
  217:             ELSE
  218:                DO 80 J = 1, N
  219:                   DO 70 I = 1, MIN( N+1-J, K+1 )
  220:                      SUM = ABS( AB( I, J ) )
  221:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  222:    70             CONTINUE
  223:    80          CONTINUE
  224:             END IF
  225:          END IF
  226:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  227: *
  228: *        Find norm1(A).
  229: *
  230:          VALUE = ZERO
  231:          UDIAG = LSAME( DIAG, 'U' )
  232:          IF( LSAME( UPLO, 'U' ) ) THEN
  233:             DO 110 J = 1, N
  234:                IF( UDIAG ) THEN
  235:                   SUM = ONE
  236:                   DO 90 I = MAX( K+2-J, 1 ), K
  237:                      SUM = SUM + ABS( AB( I, J ) )
  238:    90             CONTINUE
  239:                ELSE
  240:                   SUM = ZERO
  241:                   DO 100 I = MAX( K+2-J, 1 ), K + 1
  242:                      SUM = SUM + ABS( AB( I, J ) )
  243:   100             CONTINUE
  244:                END IF
  245:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  246:   110       CONTINUE
  247:          ELSE
  248:             DO 140 J = 1, N
  249:                IF( UDIAG ) THEN
  250:                   SUM = ONE
  251:                   DO 120 I = 2, MIN( N+1-J, K+1 )
  252:                      SUM = SUM + ABS( AB( I, J ) )
  253:   120             CONTINUE
  254:                ELSE
  255:                   SUM = ZERO
  256:                   DO 130 I = 1, MIN( N+1-J, K+1 )
  257:                      SUM = SUM + ABS( AB( I, J ) )
  258:   130             CONTINUE
  259:                END IF
  260:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  261:   140       CONTINUE
  262:          END IF
  263:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  264: *
  265: *        Find normI(A).
  266: *
  267:          VALUE = ZERO
  268:          IF( LSAME( UPLO, 'U' ) ) THEN
  269:             IF( LSAME( DIAG, 'U' ) ) THEN
  270:                DO 150 I = 1, N
  271:                   WORK( I ) = ONE
  272:   150          CONTINUE
  273:                DO 170 J = 1, N
  274:                   L = K + 1 - J
  275:                   DO 160 I = MAX( 1, J-K ), J - 1
  276:                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  277:   160             CONTINUE
  278:   170          CONTINUE
  279:             ELSE
  280:                DO 180 I = 1, N
  281:                   WORK( I ) = ZERO
  282:   180          CONTINUE
  283:                DO 200 J = 1, N
  284:                   L = K + 1 - J
  285:                   DO 190 I = MAX( 1, J-K ), J
  286:                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  287:   190             CONTINUE
  288:   200          CONTINUE
  289:             END IF
  290:          ELSE
  291:             IF( LSAME( DIAG, 'U' ) ) THEN
  292:                DO 210 I = 1, N
  293:                   WORK( I ) = ONE
  294:   210          CONTINUE
  295:                DO 230 J = 1, N
  296:                   L = 1 - J
  297:                   DO 220 I = J + 1, MIN( N, J+K )
  298:                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  299:   220             CONTINUE
  300:   230          CONTINUE
  301:             ELSE
  302:                DO 240 I = 1, N
  303:                   WORK( I ) = ZERO
  304:   240          CONTINUE
  305:                DO 260 J = 1, N
  306:                   L = 1 - J
  307:                   DO 250 I = J, MIN( N, J+K )
  308:                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  309:   250             CONTINUE
  310:   260          CONTINUE
  311:             END IF
  312:          END IF
  313:          DO 270 I = 1, N
  314:             SUM = WORK( I )
  315:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  316:   270    CONTINUE
  317:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  318: *
  319: *        Find normF(A).
  320: *        SSQ(1) is scale
  321: *        SSQ(2) is sum-of-squares
  322: *        For better accuracy, sum each column separately.
  323: *
  324:          IF( LSAME( UPLO, 'U' ) ) THEN
  325:             IF( LSAME( DIAG, 'U' ) ) THEN
  326:                SSQ( 1 ) = ONE
  327:                SSQ( 2 ) = N
  328:                IF( K.GT.0 ) THEN
  329:                   DO 280 J = 2, N
  330:                      COLSSQ( 1 ) = ZERO
  331:                      COLSSQ( 2 ) = ONE
  332:                      CALL ZLASSQ( MIN( J-1, K ),
  333:      $                            AB( MAX( K+2-J, 1 ), J ), 1,
  334:      $                            COLSSQ( 1 ), COLSSQ( 2 ) )
  335:                      CALL DCOMBSSQ( SSQ, COLSSQ )
  336:   280             CONTINUE
  337:                END IF
  338:             ELSE
  339:                SSQ( 1 ) = ZERO
  340:                SSQ( 2 ) = ONE
  341:                DO 290 J = 1, N
  342:                   COLSSQ( 1 ) = ZERO
  343:                   COLSSQ( 2 ) = ONE
  344:                   CALL ZLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
  345:      $                         1, COLSSQ( 1 ), COLSSQ( 2 ) )
  346:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  347:   290          CONTINUE
  348:             END IF
  349:          ELSE
  350:             IF( LSAME( DIAG, 'U' ) ) THEN
  351:                SSQ( 1 ) = ONE
  352:                SSQ( 2 ) = N
  353:                IF( K.GT.0 ) THEN
  354:                   DO 300 J = 1, N - 1
  355:                      COLSSQ( 1 ) = ZERO
  356:                      COLSSQ( 2 ) = ONE
  357:                      CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
  358:      $                            COLSSQ( 1 ), COLSSQ( 2 ) )
  359:                      CALL DCOMBSSQ( SSQ, COLSSQ )
  360:   300             CONTINUE
  361:                END IF
  362:             ELSE
  363:                SSQ( 1 ) = ZERO
  364:                SSQ( 2 ) = ONE
  365:                DO 310 J = 1, N
  366:                   COLSSQ( 1 ) = ZERO
  367:                   COLSSQ( 2 ) = ONE
  368:                   CALL ZLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1,
  369:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  370:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  371:   310          CONTINUE
  372:             END IF
  373:          END IF
  374:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  375:       END IF
  376: *
  377:       ZLANTB = VALUE
  378:       RETURN
  379: *
  380: *     End of ZLANTB
  381: *
  382:       END

CVSweb interface <joel.bertrand@systella.fr>