File:  [local] / rpl / lapack / lapack / zlansy.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:50 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          NORM, UPLO
   10:       INTEGER            LDA, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   WORK( * )
   14:       COMPLEX*16         A( LDA, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZLANSY  returns the value of the one norm,  or the Frobenius norm, or
   21: *  the  infinity norm,  or the  element of  largest absolute value  of a
   22: *  complex symmetric matrix A.
   23: *
   24: *  Description
   25: *  ===========
   26: *
   27: *  ZLANSY returns the value
   28: *
   29: *     ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   30: *              (
   31: *              ( norm1(A),         NORM = '1', 'O' or 'o'
   32: *              (
   33: *              ( normI(A),         NORM = 'I' or 'i'
   34: *              (
   35: *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   36: *
   37: *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
   38: *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   39: *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
   40: *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   41: *
   42: *  Arguments
   43: *  =========
   44: *
   45: *  NORM    (input) CHARACTER*1
   46: *          Specifies the value to be returned in ZLANSY as described
   47: *          above.
   48: *
   49: *  UPLO    (input) CHARACTER*1
   50: *          Specifies whether the upper or lower triangular part of the
   51: *          symmetric matrix A is to be referenced.
   52: *          = 'U':  Upper triangular part of A is referenced
   53: *          = 'L':  Lower triangular part of A is referenced
   54: *
   55: *  N       (input) INTEGER
   56: *          The order of the matrix A.  N >= 0.  When N = 0, ZLANSY is
   57: *          set to zero.
   58: *
   59: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   60: *          The symmetric matrix A.  If UPLO = 'U', the leading n by n
   61: *          upper triangular part of A contains the upper triangular part
   62: *          of the matrix A, and the strictly lower triangular part of A
   63: *          is not referenced.  If UPLO = 'L', the leading n by n lower
   64: *          triangular part of A contains the lower triangular part of
   65: *          the matrix A, and the strictly upper triangular part of A is
   66: *          not referenced.
   67: *
   68: *  LDA     (input) INTEGER
   69: *          The leading dimension of the array A.  LDA >= max(N,1).
   70: *
   71: *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
   72: *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
   73: *          WORK is not referenced.
   74: *
   75: * =====================================================================
   76: *
   77: *     .. Parameters ..
   78:       DOUBLE PRECISION   ONE, ZERO
   79:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
   80: *     ..
   81: *     .. Local Scalars ..
   82:       INTEGER            I, J
   83:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
   84: *     ..
   85: *     .. External Functions ..
   86:       LOGICAL            LSAME
   87:       EXTERNAL           LSAME
   88: *     ..
   89: *     .. External Subroutines ..
   90:       EXTERNAL           ZLASSQ
   91: *     ..
   92: *     .. Intrinsic Functions ..
   93:       INTRINSIC          ABS, MAX, SQRT
   94: *     ..
   95: *     .. Executable Statements ..
   96: *
   97:       IF( N.EQ.0 ) THEN
   98:          VALUE = ZERO
   99:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  100: *
  101: *        Find max(abs(A(i,j))).
  102: *
  103:          VALUE = ZERO
  104:          IF( LSAME( UPLO, 'U' ) ) THEN
  105:             DO 20 J = 1, N
  106:                DO 10 I = 1, J
  107:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  108:    10          CONTINUE
  109:    20       CONTINUE
  110:          ELSE
  111:             DO 40 J = 1, N
  112:                DO 30 I = J, N
  113:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  114:    30          CONTINUE
  115:    40       CONTINUE
  116:          END IF
  117:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  118:      $         ( NORM.EQ.'1' ) ) THEN
  119: *
  120: *        Find normI(A) ( = norm1(A), since A is symmetric).
  121: *
  122:          VALUE = ZERO
  123:          IF( LSAME( UPLO, 'U' ) ) THEN
  124:             DO 60 J = 1, N
  125:                SUM = ZERO
  126:                DO 50 I = 1, J - 1
  127:                   ABSA = ABS( A( I, J ) )
  128:                   SUM = SUM + ABSA
  129:                   WORK( I ) = WORK( I ) + ABSA
  130:    50          CONTINUE
  131:                WORK( J ) = SUM + ABS( A( J, J ) )
  132:    60       CONTINUE
  133:             DO 70 I = 1, N
  134:                VALUE = MAX( VALUE, WORK( I ) )
  135:    70       CONTINUE
  136:          ELSE
  137:             DO 80 I = 1, N
  138:                WORK( I ) = ZERO
  139:    80       CONTINUE
  140:             DO 100 J = 1, N
  141:                SUM = WORK( J ) + ABS( A( J, J ) )
  142:                DO 90 I = J + 1, N
  143:                   ABSA = ABS( A( I, J ) )
  144:                   SUM = SUM + ABSA
  145:                   WORK( I ) = WORK( I ) + ABSA
  146:    90          CONTINUE
  147:                VALUE = MAX( VALUE, SUM )
  148:   100       CONTINUE
  149:          END IF
  150:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  151: *
  152: *        Find normF(A).
  153: *
  154:          SCALE = ZERO
  155:          SUM = ONE
  156:          IF( LSAME( UPLO, 'U' ) ) THEN
  157:             DO 110 J = 2, N
  158:                CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  159:   110       CONTINUE
  160:          ELSE
  161:             DO 120 J = 1, N - 1
  162:                CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  163:   120       CONTINUE
  164:          END IF
  165:          SUM = 2*SUM
  166:          CALL ZLASSQ( N, A, LDA+1, SCALE, SUM )
  167:          VALUE = SCALE*SQRT( SUM )
  168:       END IF
  169: *
  170:       ZLANSY = VALUE
  171:       RETURN
  172: *
  173: *     End of ZLANSY
  174: *
  175:       END

CVSweb interface <joel.bertrand@systella.fr>