File:  [local] / rpl / lapack / lapack / zlansy.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:38 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLANSY + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansy.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansy.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansy.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          NORM, UPLO
   25: *       INTEGER            LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   WORK( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLANSY  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> complex symmetric matrix A.
   41: *> \endverbatim
   42: *>
   43: *> \return ZLANSY
   44: *> \verbatim
   45: *>
   46: *>    ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in ZLANSY as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the upper or lower triangular part of the
   74: *>          symmetric matrix A is to be referenced.
   75: *>          = 'U':  Upper triangular part of A is referenced
   76: *>          = 'L':  Lower triangular part of A is referenced
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANSY is
   83: *>          set to zero.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] A
   87: *> \verbatim
   88: *>          A is COMPLEX*16 array, dimension (LDA,N)
   89: *>          The symmetric matrix A.  If UPLO = 'U', the leading n by n
   90: *>          upper triangular part of A contains the upper triangular part
   91: *>          of the matrix A, and the strictly lower triangular part of A
   92: *>          is not referenced.  If UPLO = 'L', the leading n by n lower
   93: *>          triangular part of A contains the lower triangular part of
   94: *>          the matrix A, and the strictly upper triangular part of A is
   95: *>          not referenced.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] LDA
   99: *> \verbatim
  100: *>          LDA is INTEGER
  101: *>          The leading dimension of the array A.  LDA >= max(N,1).
  102: *> \endverbatim
  103: *>
  104: *> \param[out] WORK
  105: *> \verbatim
  106: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  107: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  108: *>          WORK is not referenced.
  109: *> \endverbatim
  110: *
  111: *  Authors:
  112: *  ========
  113: *
  114: *> \author Univ. of Tennessee 
  115: *> \author Univ. of California Berkeley 
  116: *> \author Univ. of Colorado Denver 
  117: *> \author NAG Ltd. 
  118: *
  119: *> \date September 2012
  120: *
  121: *> \ingroup complex16SYauxiliary
  122: *
  123: *  =====================================================================
  124:       DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
  125: *
  126: *  -- LAPACK auxiliary routine (version 3.4.2) --
  127: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  128: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129: *     September 2012
  130: *
  131: *     .. Scalar Arguments ..
  132:       CHARACTER          NORM, UPLO
  133:       INTEGER            LDA, N
  134: *     ..
  135: *     .. Array Arguments ..
  136:       DOUBLE PRECISION   WORK( * )
  137:       COMPLEX*16         A( LDA, * )
  138: *     ..
  139: *
  140: * =====================================================================
  141: *
  142: *     .. Parameters ..
  143:       DOUBLE PRECISION   ONE, ZERO
  144:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  145: *     ..
  146: *     .. Local Scalars ..
  147:       INTEGER            I, J
  148:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
  149: *     ..
  150: *     .. External Functions ..
  151:       LOGICAL            LSAME, DISNAN
  152:       EXTERNAL           LSAME, DISNAN
  153: *     ..
  154: *     .. External Subroutines ..
  155:       EXTERNAL           ZLASSQ
  156: *     ..
  157: *     .. Intrinsic Functions ..
  158:       INTRINSIC          ABS, SQRT
  159: *     ..
  160: *     .. Executable Statements ..
  161: *
  162:       IF( N.EQ.0 ) THEN
  163:          VALUE = ZERO
  164:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  165: *
  166: *        Find max(abs(A(i,j))).
  167: *
  168:          VALUE = ZERO
  169:          IF( LSAME( UPLO, 'U' ) ) THEN
  170:             DO 20 J = 1, N
  171:                DO 10 I = 1, J
  172:                   SUM = ABS( A( I, J ) )
  173:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  174:    10          CONTINUE
  175:    20       CONTINUE
  176:          ELSE
  177:             DO 40 J = 1, N
  178:                DO 30 I = J, N
  179:                   SUM = ABS( A( I, J ) )
  180:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  181:    30          CONTINUE
  182:    40       CONTINUE
  183:          END IF
  184:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  185:      $         ( NORM.EQ.'1' ) ) THEN
  186: *
  187: *        Find normI(A) ( = norm1(A), since A is symmetric).
  188: *
  189:          VALUE = ZERO
  190:          IF( LSAME( UPLO, 'U' ) ) THEN
  191:             DO 60 J = 1, N
  192:                SUM = ZERO
  193:                DO 50 I = 1, J - 1
  194:                   ABSA = ABS( A( I, J ) )
  195:                   SUM = SUM + ABSA
  196:                   WORK( I ) = WORK( I ) + ABSA
  197:    50          CONTINUE
  198:                WORK( J ) = SUM + ABS( A( J, J ) )
  199:    60       CONTINUE
  200:             DO 70 I = 1, N
  201:                SUM = WORK( I )
  202:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  203:    70       CONTINUE
  204:          ELSE
  205:             DO 80 I = 1, N
  206:                WORK( I ) = ZERO
  207:    80       CONTINUE
  208:             DO 100 J = 1, N
  209:                SUM = WORK( J ) + ABS( A( J, J ) )
  210:                DO 90 I = J + 1, N
  211:                   ABSA = ABS( A( I, J ) )
  212:                   SUM = SUM + ABSA
  213:                   WORK( I ) = WORK( I ) + ABSA
  214:    90          CONTINUE
  215:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  216:   100       CONTINUE
  217:          END IF
  218:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  219: *
  220: *        Find normF(A).
  221: *
  222:          SCALE = ZERO
  223:          SUM = ONE
  224:          IF( LSAME( UPLO, 'U' ) ) THEN
  225:             DO 110 J = 2, N
  226:                CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  227:   110       CONTINUE
  228:          ELSE
  229:             DO 120 J = 1, N - 1
  230:                CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  231:   120       CONTINUE
  232:          END IF
  233:          SUM = 2*SUM
  234:          CALL ZLASSQ( N, A, LDA+1, SCALE, SUM )
  235:          VALUE = SCALE*SQRT( SUM )
  236:       END IF
  237: *
  238:       ZLANSY = VALUE
  239:       RETURN
  240: *
  241: *     End of ZLANSY
  242: *
  243:       END

CVSweb interface <joel.bertrand@systella.fr>