File:  [local] / rpl / lapack / lapack / zlansp.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:08 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLANSP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANSP( NORM, UPLO, N, AP, WORK )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          NORM, UPLO
   25: *       INTEGER            N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   WORK( * )
   29: *       COMPLEX*16         AP( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLANSP  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> complex symmetric matrix A,  supplied in packed form.
   41: *> \endverbatim
   42: *>
   43: *> \return ZLANSP
   44: *> \verbatim
   45: *>
   46: *>    ZLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in ZLANSP as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the upper or lower triangular part of the
   74: *>          symmetric matrix A is supplied.
   75: *>          = 'U':  Upper triangular part of A is supplied
   76: *>          = 'L':  Lower triangular part of A is supplied
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANSP is
   83: *>          set to zero.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] AP
   87: *> \verbatim
   88: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   89: *>          The upper or lower triangle of the symmetric matrix A, packed
   90: *>          columnwise in a linear array.  The j-th column of A is stored
   91: *>          in the array AP as follows:
   92: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   93: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   94: *> \endverbatim
   95: *>
   96: *> \param[out] WORK
   97: *> \verbatim
   98: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
   99: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  100: *>          WORK is not referenced.
  101: *> \endverbatim
  102: *
  103: *  Authors:
  104: *  ========
  105: *
  106: *> \author Univ. of Tennessee
  107: *> \author Univ. of California Berkeley
  108: *> \author Univ. of Colorado Denver
  109: *> \author NAG Ltd.
  110: *
  111: *> \date December 2016
  112: *
  113: *> \ingroup complex16OTHERauxiliary
  114: *
  115: *  =====================================================================
  116:       DOUBLE PRECISION FUNCTION ZLANSP( NORM, UPLO, N, AP, WORK )
  117: *
  118: *  -- LAPACK auxiliary routine (version 3.7.0) --
  119: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  120: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121: *     December 2016
  122: *
  123:       IMPLICIT NONE
  124: *     .. Scalar Arguments ..
  125:       CHARACTER          NORM, UPLO
  126:       INTEGER            N
  127: *     ..
  128: *     .. Array Arguments ..
  129:       DOUBLE PRECISION   WORK( * )
  130:       COMPLEX*16         AP( * )
  131: *     ..
  132: *
  133: * =====================================================================
  134: *
  135: *     .. Parameters ..
  136:       DOUBLE PRECISION   ONE, ZERO
  137:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  138: *     ..
  139: *     .. Local Scalars ..
  140:       INTEGER            I, J, K
  141:       DOUBLE PRECISION   ABSA, SUM, VALUE
  142: *     ..
  143: *     .. Local Arrays ..
  144:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
  145: *     ..
  146: *     .. External Functions ..
  147:       LOGICAL            LSAME, DISNAN
  148:       EXTERNAL           LSAME, DISNAN
  149: *     ..
  150: *     .. External Subroutines ..
  151:       EXTERNAL           ZLASSQ, DCOMBSSQ
  152: *     ..
  153: *     .. Intrinsic Functions ..
  154:       INTRINSIC          ABS, DBLE, DIMAG, SQRT
  155: *     ..
  156: *     .. Executable Statements ..
  157: *
  158:       IF( N.EQ.0 ) THEN
  159:          VALUE = ZERO
  160:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  161: *
  162: *        Find max(abs(A(i,j))).
  163: *
  164:          VALUE = ZERO
  165:          IF( LSAME( UPLO, 'U' ) ) THEN
  166:             K = 1
  167:             DO 20 J = 1, N
  168:                DO 10 I = K, K + J - 1
  169:                   SUM = ABS( AP( I ) )
  170:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  171:    10          CONTINUE
  172:                K = K + J
  173:    20       CONTINUE
  174:          ELSE
  175:             K = 1
  176:             DO 40 J = 1, N
  177:                DO 30 I = K, K + N - J
  178:                   SUM = ABS( AP( I ) )
  179:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  180:    30          CONTINUE
  181:                K = K + N - J + 1
  182:    40       CONTINUE
  183:          END IF
  184:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  185:      $         ( NORM.EQ.'1' ) ) THEN
  186: *
  187: *        Find normI(A) ( = norm1(A), since A is symmetric).
  188: *
  189:          VALUE = ZERO
  190:          K = 1
  191:          IF( LSAME( UPLO, 'U' ) ) THEN
  192:             DO 60 J = 1, N
  193:                SUM = ZERO
  194:                DO 50 I = 1, J - 1
  195:                   ABSA = ABS( AP( K ) )
  196:                   SUM = SUM + ABSA
  197:                   WORK( I ) = WORK( I ) + ABSA
  198:                   K = K + 1
  199:    50          CONTINUE
  200:                WORK( J ) = SUM + ABS( AP( K ) )
  201:                K = K + 1
  202:    60       CONTINUE
  203:             DO 70 I = 1, N
  204:                SUM = WORK( I )
  205:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  206:    70       CONTINUE
  207:          ELSE
  208:             DO 80 I = 1, N
  209:                WORK( I ) = ZERO
  210:    80       CONTINUE
  211:             DO 100 J = 1, N
  212:                SUM = WORK( J ) + ABS( AP( K ) )
  213:                K = K + 1
  214:                DO 90 I = J + 1, N
  215:                   ABSA = ABS( AP( K ) )
  216:                   SUM = SUM + ABSA
  217:                   WORK( I ) = WORK( I ) + ABSA
  218:                   K = K + 1
  219:    90          CONTINUE
  220:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  221:   100       CONTINUE
  222:          END IF
  223:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  224: *
  225: *        Find normF(A).
  226: *        SSQ(1) is scale
  227: *        SSQ(2) is sum-of-squares
  228: *        For better accuracy, sum each column separately.
  229: *
  230:          SSQ( 1 ) = ZERO
  231:          SSQ( 2 ) = ONE
  232: *
  233: *        Sum off-diagonals
  234: *
  235:          K = 2
  236:          IF( LSAME( UPLO, 'U' ) ) THEN
  237:             DO 110 J = 2, N
  238:                COLSSQ( 1 ) = ZERO
  239:                COLSSQ( 2 ) = ONE
  240:                CALL ZLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  241:                CALL DCOMBSSQ( SSQ, COLSSQ )
  242:                K = K + J
  243:   110       CONTINUE
  244:          ELSE
  245:             DO 120 J = 1, N - 1
  246:                COLSSQ( 1 ) = ZERO
  247:                COLSSQ( 2 ) = ONE
  248:                CALL ZLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  249:                CALL DCOMBSSQ( SSQ, COLSSQ )
  250:                K = K + N - J + 1
  251:   120       CONTINUE
  252:          END IF
  253:          SSQ( 2 ) = 2*SSQ( 2 )
  254: *
  255: *        Sum diagonal
  256: *
  257:          K = 1
  258:          COLSSQ( 1 ) = ZERO
  259:          COLSSQ( 2 ) = ONE
  260:          DO 130 I = 1, N
  261:             IF( DBLE( AP( K ) ).NE.ZERO ) THEN
  262:                ABSA = ABS( DBLE( AP( K ) ) )
  263:                IF( COLSSQ( 1 ).LT.ABSA ) THEN
  264:                   COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
  265:                   COLSSQ( 1 ) = ABSA
  266:                ELSE
  267:                   COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
  268:                END IF
  269:             END IF
  270:             IF( DIMAG( AP( K ) ).NE.ZERO ) THEN
  271:                ABSA = ABS( DIMAG( AP( K ) ) )
  272:                IF( COLSSQ( 1 ).LT.ABSA ) THEN
  273:                   COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
  274:                   COLSSQ( 1 ) = ABSA
  275:                ELSE
  276:                   COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
  277:                END IF
  278:             END IF
  279:             IF( LSAME( UPLO, 'U' ) ) THEN
  280:                K = K + I + 1
  281:             ELSE
  282:                K = K + N - I + 1
  283:             END IF
  284:   130    CONTINUE
  285:          CALL DCOMBSSQ( SSQ, COLSSQ )
  286:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  287:       END IF
  288: *
  289:       ZLANSP = VALUE
  290:       RETURN
  291: *
  292: *     End of ZLANSP
  293: *
  294:       END

CVSweb interface <joel.bertrand@systella.fr>