File:  [local] / rpl / lapack / lapack / zlansp.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:20 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLANSP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANSP( NORM, UPLO, N, AP, WORK )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          NORM, UPLO
   25: *       INTEGER            N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   WORK( * )
   29: *       COMPLEX*16         AP( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLANSP  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> complex symmetric matrix A,  supplied in packed form.
   41: *> \endverbatim
   42: *>
   43: *> \return ZLANSP
   44: *> \verbatim
   45: *>
   46: *>    ZLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in ZLANSP as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the upper or lower triangular part of the
   74: *>          symmetric matrix A is supplied.
   75: *>          = 'U':  Upper triangular part of A is supplied
   76: *>          = 'L':  Lower triangular part of A is supplied
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANSP is
   83: *>          set to zero.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] AP
   87: *> \verbatim
   88: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   89: *>          The upper or lower triangle of the symmetric matrix A, packed
   90: *>          columnwise in a linear array.  The j-th column of A is stored
   91: *>          in the array AP as follows:
   92: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   93: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   94: *> \endverbatim
   95: *>
   96: *> \param[out] WORK
   97: *> \verbatim
   98: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
   99: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  100: *>          WORK is not referenced.
  101: *> \endverbatim
  102: *
  103: *  Authors:
  104: *  ========
  105: *
  106: *> \author Univ. of Tennessee
  107: *> \author Univ. of California Berkeley
  108: *> \author Univ. of Colorado Denver
  109: *> \author NAG Ltd.
  110: *
  111: *> \date December 2016
  112: *
  113: *> \ingroup complex16OTHERauxiliary
  114: *
  115: *  =====================================================================
  116:       DOUBLE PRECISION FUNCTION ZLANSP( NORM, UPLO, N, AP, WORK )
  117: *
  118: *  -- LAPACK auxiliary routine (version 3.7.0) --
  119: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  120: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121: *     December 2016
  122: *
  123: *     .. Scalar Arguments ..
  124:       CHARACTER          NORM, UPLO
  125:       INTEGER            N
  126: *     ..
  127: *     .. Array Arguments ..
  128:       DOUBLE PRECISION   WORK( * )
  129:       COMPLEX*16         AP( * )
  130: *     ..
  131: *
  132: * =====================================================================
  133: *
  134: *     .. Parameters ..
  135:       DOUBLE PRECISION   ONE, ZERO
  136:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  137: *     ..
  138: *     .. Local Scalars ..
  139:       INTEGER            I, J, K
  140:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
  141: *     ..
  142: *     .. External Functions ..
  143:       LOGICAL            LSAME, DISNAN
  144:       EXTERNAL           LSAME, DISNAN
  145: *     ..
  146: *     .. External Subroutines ..
  147:       EXTERNAL           ZLASSQ
  148: *     ..
  149: *     .. Intrinsic Functions ..
  150:       INTRINSIC          ABS, DBLE, DIMAG, SQRT
  151: *     ..
  152: *     .. Executable Statements ..
  153: *
  154:       IF( N.EQ.0 ) THEN
  155:          VALUE = ZERO
  156:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  157: *
  158: *        Find max(abs(A(i,j))).
  159: *
  160:          VALUE = ZERO
  161:          IF( LSAME( UPLO, 'U' ) ) THEN
  162:             K = 1
  163:             DO 20 J = 1, N
  164:                DO 10 I = K, K + J - 1
  165:                   SUM = ABS( AP( I ) )
  166:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  167:    10          CONTINUE
  168:                K = K + J
  169:    20       CONTINUE
  170:          ELSE
  171:             K = 1
  172:             DO 40 J = 1, N
  173:                DO 30 I = K, K + N - J
  174:                   SUM = ABS( AP( I ) )
  175:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  176:    30          CONTINUE
  177:                K = K + N - J + 1
  178:    40       CONTINUE
  179:          END IF
  180:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  181:      $         ( NORM.EQ.'1' ) ) THEN
  182: *
  183: *        Find normI(A) ( = norm1(A), since A is symmetric).
  184: *
  185:          VALUE = ZERO
  186:          K = 1
  187:          IF( LSAME( UPLO, 'U' ) ) THEN
  188:             DO 60 J = 1, N
  189:                SUM = ZERO
  190:                DO 50 I = 1, J - 1
  191:                   ABSA = ABS( AP( K ) )
  192:                   SUM = SUM + ABSA
  193:                   WORK( I ) = WORK( I ) + ABSA
  194:                   K = K + 1
  195:    50          CONTINUE
  196:                WORK( J ) = SUM + ABS( AP( K ) )
  197:                K = K + 1
  198:    60       CONTINUE
  199:             DO 70 I = 1, N
  200:                SUM = WORK( I )
  201:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  202:    70       CONTINUE
  203:          ELSE
  204:             DO 80 I = 1, N
  205:                WORK( I ) = ZERO
  206:    80       CONTINUE
  207:             DO 100 J = 1, N
  208:                SUM = WORK( J ) + ABS( AP( K ) )
  209:                K = K + 1
  210:                DO 90 I = J + 1, N
  211:                   ABSA = ABS( AP( K ) )
  212:                   SUM = SUM + ABSA
  213:                   WORK( I ) = WORK( I ) + ABSA
  214:                   K = K + 1
  215:    90          CONTINUE
  216:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  217:   100       CONTINUE
  218:          END IF
  219:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  220: *
  221: *        Find normF(A).
  222: *
  223:          SCALE = ZERO
  224:          SUM = ONE
  225:          K = 2
  226:          IF( LSAME( UPLO, 'U' ) ) THEN
  227:             DO 110 J = 2, N
  228:                CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
  229:                K = K + J
  230:   110       CONTINUE
  231:          ELSE
  232:             DO 120 J = 1, N - 1
  233:                CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
  234:                K = K + N - J + 1
  235:   120       CONTINUE
  236:          END IF
  237:          SUM = 2*SUM
  238:          K = 1
  239:          DO 130 I = 1, N
  240:             IF( DBLE( AP( K ) ).NE.ZERO ) THEN
  241:                ABSA = ABS( DBLE( AP( K ) ) )
  242:                IF( SCALE.LT.ABSA ) THEN
  243:                   SUM = ONE + SUM*( SCALE / ABSA )**2
  244:                   SCALE = ABSA
  245:                ELSE
  246:                   SUM = SUM + ( ABSA / SCALE )**2
  247:                END IF
  248:             END IF
  249:             IF( DIMAG( AP( K ) ).NE.ZERO ) THEN
  250:                ABSA = ABS( DIMAG( AP( K ) ) )
  251:                IF( SCALE.LT.ABSA ) THEN
  252:                   SUM = ONE + SUM*( SCALE / ABSA )**2
  253:                   SCALE = ABSA
  254:                ELSE
  255:                   SUM = SUM + ( ABSA / SCALE )**2
  256:                END IF
  257:             END IF
  258:             IF( LSAME( UPLO, 'U' ) ) THEN
  259:                K = K + I + 1
  260:             ELSE
  261:                K = K + N - I + 1
  262:             END IF
  263:   130    CONTINUE
  264:          VALUE = SCALE*SQRT( SUM )
  265:       END IF
  266: *
  267:       ZLANSP = VALUE
  268:       RETURN
  269: *
  270: *     End of ZLANSP
  271: *
  272:       END

CVSweb interface <joel.bertrand@systella.fr>