--- rpl/lapack/lapack/zlansb.f 2010/08/07 13:22:39 1.5 +++ rpl/lapack/lapack/zlansb.f 2020/05/21 21:46:08 1.18 @@ -1,11 +1,141 @@ +*> \brief \b ZLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download ZLANSB + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* DOUBLE PRECISION FUNCTION ZLANSB( NORM, UPLO, N, K, AB, LDAB, +* WORK ) +* +* .. Scalar Arguments .. +* CHARACTER NORM, UPLO +* INTEGER K, LDAB, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION WORK( * ) +* COMPLEX*16 AB( LDAB, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ZLANSB returns the value of the one norm, or the Frobenius norm, or +*> the infinity norm, or the element of largest absolute value of an +*> n by n symmetric band matrix A, with k super-diagonals. +*> \endverbatim +*> +*> \return ZLANSB +*> \verbatim +*> +*> ZLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm' +*> ( +*> ( norm1(A), NORM = '1', 'O' or 'o' +*> ( +*> ( normI(A), NORM = 'I' or 'i' +*> ( +*> ( normF(A), NORM = 'F', 'f', 'E' or 'e' +*> +*> where norm1 denotes the one norm of a matrix (maximum column sum), +*> normI denotes the infinity norm of a matrix (maximum row sum) and +*> normF denotes the Frobenius norm of a matrix (square root of sum of +*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] NORM +*> \verbatim +*> NORM is CHARACTER*1 +*> Specifies the value to be returned in ZLANSB as described +*> above. +*> \endverbatim +*> +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> Specifies whether the upper or lower triangular part of the +*> band matrix A is supplied. +*> = 'U': Upper triangular part is supplied +*> = 'L': Lower triangular part is supplied +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. When N = 0, ZLANSB is +*> set to zero. +*> \endverbatim +*> +*> \param[in] K +*> \verbatim +*> K is INTEGER +*> The number of super-diagonals or sub-diagonals of the +*> band matrix A. K >= 0. +*> \endverbatim +*> +*> \param[in] AB +*> \verbatim +*> AB is COMPLEX*16 array, dimension (LDAB,N) +*> The upper or lower triangle of the symmetric band matrix A, +*> stored in the first K+1 rows of AB. The j-th column of A is +*> stored in the j-th column of the array AB as follows: +*> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; +*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). +*> \endverbatim +*> +*> \param[in] LDAB +*> \verbatim +*> LDAB is INTEGER +*> The leading dimension of the array AB. LDAB >= K+1. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), +*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, +*> WORK is not referenced. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date December 2016 +* +*> \ingroup complex16OTHERauxiliary +* +* ===================================================================== DOUBLE PRECISION FUNCTION ZLANSB( NORM, UPLO, N, K, AB, LDAB, $ WORK ) * -* -- LAPACK auxiliary routine (version 3.2) -- +* -- LAPACK auxiliary routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 +* December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER K, LDAB, N @@ -15,66 +145,6 @@ COMPLEX*16 AB( LDAB, * ) * .. * -* Purpose -* ======= -* -* ZLANSB returns the value of the one norm, or the Frobenius norm, or -* the infinity norm, or the element of largest absolute value of an -* n by n symmetric band matrix A, with k super-diagonals. -* -* Description -* =========== -* -* ZLANSB returns the value -* -* ZLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm' -* ( -* ( norm1(A), NORM = '1', 'O' or 'o' -* ( -* ( normI(A), NORM = 'I' or 'i' -* ( -* ( normF(A), NORM = 'F', 'f', 'E' or 'e' -* -* where norm1 denotes the one norm of a matrix (maximum column sum), -* normI denotes the infinity norm of a matrix (maximum row sum) and -* normF denotes the Frobenius norm of a matrix (square root of sum of -* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. -* -* Arguments -* ========= -* -* NORM (input) CHARACTER*1 -* Specifies the value to be returned in ZLANSB as described -* above. -* -* UPLO (input) CHARACTER*1 -* Specifies whether the upper or lower triangular part of the -* band matrix A is supplied. -* = 'U': Upper triangular part is supplied -* = 'L': Lower triangular part is supplied -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. When N = 0, ZLANSB is -* set to zero. -* -* K (input) INTEGER -* The number of super-diagonals or sub-diagonals of the -* band matrix A. K >= 0. -* -* AB (input) COMPLEX*16 array, dimension (LDAB,N) -* The upper or lower triangle of the symmetric band matrix A, -* stored in the first K+1 rows of AB. The j-th column of A is -* stored in the j-th column of the array AB as follows: -* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; -* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). -* -* LDAB (input) INTEGER -* The leading dimension of the array AB. LDAB >= K+1. -* -* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), -* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, -* WORK is not referenced. -* * ===================================================================== * * .. Parameters .. @@ -83,14 +153,17 @@ * .. * .. Local Scalars .. INTEGER I, J, L - DOUBLE PRECISION ABSA, SCALE, SUM, VALUE + DOUBLE PRECISION ABSA, SUM, VALUE +* .. +* .. Local Arrays .. + DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME + LOGICAL LSAME, DISNAN + EXTERNAL LSAME, DISNAN * .. * .. External Subroutines .. - EXTERNAL ZLASSQ + EXTERNAL ZLASSQ, DCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT @@ -107,13 +180,15 @@ IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = MAX( K+2-J, 1 ), K + 1 - VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) + SUM = ABS( AB( I, J ) ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = 1, MIN( N+1-J, K+1 ) - VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) + SUM = ABS( AB( I, J ) ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 30 CONTINUE 40 CONTINUE END IF @@ -135,7 +210,8 @@ WORK( J ) = SUM + ABS( AB( K+1, J ) ) 60 CONTINUE DO 70 I = 1, N - VALUE = MAX( VALUE, WORK( I ) ) + SUM = WORK( I ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 70 CONTINUE ELSE DO 80 I = 1, N @@ -149,35 +225,53 @@ SUM = SUM + ABSA WORK( I ) = WORK( I ) + ABSA 90 CONTINUE - VALUE = MAX( VALUE, SUM ) + IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 100 CONTINUE END IF ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. +* + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE +* +* Sum off-diagonals * - SCALE = ZERO - SUM = ONE IF( K.GT.0 ) THEN IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE CALL ZLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ), - $ 1, SCALE, SUM ) + $ 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL DCOMBSSQ( SSQ, COLSSQ ) 110 CONTINUE L = K + 1 ELSE DO 120 J = 1, N - 1 - CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE, - $ SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL DCOMBSSQ( SSQ, COLSSQ ) 120 CONTINUE L = 1 END IF - SUM = 2*SUM + SSQ( 2 ) = 2*SSQ( 2 ) ELSE L = 1 END IF - CALL ZLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM ) - VALUE = SCALE*SQRT( SUM ) +* +* Sum diagonal +* + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL ZLASSQ( N, AB( L, 1 ), LDAB, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL DCOMBSSQ( SSQ, COLSSQ ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * ZLANSB = VALUE