Annotation of rpl/lapack/lapack/zlanhs.f, revision 1.18

1.11      bertrand    1: *> \brief \b ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZLANHS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhs.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
1.15      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          NORM
                     25: *       INTEGER            LDA, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   WORK( * )
                     29: *       COMPLEX*16         A( LDA, * )
                     30: *       ..
1.15      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZLANHS  returns the value of the one norm,  or the Frobenius norm, or
                     39: *> the  infinity norm,  or the  element of  largest absolute value  of a
                     40: *> Hessenberg matrix A.
                     41: *> \endverbatim
                     42: *>
                     43: *> \return ZLANHS
                     44: *> \verbatim
                     45: *>
                     46: *>    ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     47: *>             (
                     48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
                     49: *>             (
                     50: *>             ( normI(A),         NORM = 'I' or 'i'
                     51: *>             (
                     52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
                     53: *>
                     54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
                     55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
                     56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
                     57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
                     58: *> \endverbatim
                     59: *
                     60: *  Arguments:
                     61: *  ==========
                     62: *
                     63: *> \param[in] NORM
                     64: *> \verbatim
                     65: *>          NORM is CHARACTER*1
                     66: *>          Specifies the value to be returned in ZLANHS as described
                     67: *>          above.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] N
                     71: *> \verbatim
                     72: *>          N is INTEGER
                     73: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHS is
                     74: *>          set to zero.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] A
                     78: *> \verbatim
                     79: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     80: *>          The n by n upper Hessenberg matrix A; the part of A below the
                     81: *>          first sub-diagonal is not referenced.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] LDA
                     85: *> \verbatim
                     86: *>          LDA is INTEGER
                     87: *>          The leading dimension of the array A.  LDA >= max(N,1).
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[out] WORK
                     91: *> \verbatim
                     92: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                     93: *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                     94: *>          referenced.
                     95: *> \endverbatim
                     96: *
                     97: *  Authors:
                     98: *  ========
                     99: *
1.15      bertrand  100: *> \author Univ. of Tennessee
                    101: *> \author Univ. of California Berkeley
                    102: *> \author Univ. of Colorado Denver
                    103: *> \author NAG Ltd.
1.8       bertrand  104: *
1.15      bertrand  105: *> \date December 2016
1.8       bertrand  106: *
                    107: *> \ingroup complex16OTHERauxiliary
                    108: *
                    109: *  =====================================================================
1.1       bertrand  110:       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
                    111: *
1.15      bertrand  112: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  113: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    114: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  115: *     December 2016
1.1       bertrand  116: *
1.18    ! bertrand  117:       IMPLICIT NONE
1.1       bertrand  118: *     .. Scalar Arguments ..
                    119:       CHARACTER          NORM
                    120:       INTEGER            LDA, N
                    121: *     ..
                    122: *     .. Array Arguments ..
                    123:       DOUBLE PRECISION   WORK( * )
                    124:       COMPLEX*16         A( LDA, * )
                    125: *     ..
                    126: *
                    127: * =====================================================================
                    128: *
                    129: *     .. Parameters ..
                    130:       DOUBLE PRECISION   ONE, ZERO
                    131:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    132: *     ..
                    133: *     .. Local Scalars ..
                    134:       INTEGER            I, J
1.18    ! bertrand  135:       DOUBLE PRECISION   SUM, VALUE
        !           136: *     ..
        !           137: *     .. Local Arrays ..
        !           138:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
1.1       bertrand  139: *     ..
                    140: *     .. External Functions ..
1.11      bertrand  141:       LOGICAL            LSAME, DISNAN
                    142:       EXTERNAL           LSAME, DISNAN
1.1       bertrand  143: *     ..
                    144: *     .. External Subroutines ..
1.18    ! bertrand  145:       EXTERNAL           ZLASSQ, DCOMBSSQ
1.1       bertrand  146: *     ..
                    147: *     .. Intrinsic Functions ..
1.11      bertrand  148:       INTRINSIC          ABS, MIN, SQRT
1.1       bertrand  149: *     ..
                    150: *     .. Executable Statements ..
                    151: *
                    152:       IF( N.EQ.0 ) THEN
                    153:          VALUE = ZERO
                    154:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
                    155: *
                    156: *        Find max(abs(A(i,j))).
                    157: *
                    158:          VALUE = ZERO
                    159:          DO 20 J = 1, N
                    160:             DO 10 I = 1, MIN( N, J+1 )
1.11      bertrand  161:                SUM = ABS( A( I, J ) )
                    162:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  163:    10       CONTINUE
                    164:    20    CONTINUE
                    165:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
                    166: *
                    167: *        Find norm1(A).
                    168: *
                    169:          VALUE = ZERO
                    170:          DO 40 J = 1, N
                    171:             SUM = ZERO
                    172:             DO 30 I = 1, MIN( N, J+1 )
                    173:                SUM = SUM + ABS( A( I, J ) )
                    174:    30       CONTINUE
1.11      bertrand  175:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  176:    40    CONTINUE
                    177:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
                    178: *
                    179: *        Find normI(A).
                    180: *
                    181:          DO 50 I = 1, N
                    182:             WORK( I ) = ZERO
                    183:    50    CONTINUE
                    184:          DO 70 J = 1, N
                    185:             DO 60 I = 1, MIN( N, J+1 )
                    186:                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
                    187:    60       CONTINUE
                    188:    70    CONTINUE
                    189:          VALUE = ZERO
                    190:          DO 80 I = 1, N
1.11      bertrand  191:             SUM = WORK( I )
                    192:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  193:    80    CONTINUE
                    194:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
                    195: *
                    196: *        Find normF(A).
1.18    ! bertrand  197: *        SSQ(1) is scale
        !           198: *        SSQ(2) is sum-of-squares
        !           199: *        For better accuracy, sum each column separately.
1.1       bertrand  200: *
1.18    ! bertrand  201:          SSQ( 1 ) = ZERO
        !           202:          SSQ( 2 ) = ONE
1.1       bertrand  203:          DO 90 J = 1, N
1.18    ! bertrand  204:             COLSSQ( 1 ) = ZERO
        !           205:             COLSSQ( 2 ) = ONE
        !           206:             CALL ZLASSQ( MIN( N, J+1 ), A( 1, J ), 1,
        !           207:      $                   COLSSQ( 1 ), COLSSQ( 2 ) )
        !           208:             CALL DCOMBSSQ( SSQ, COLSSQ )
1.1       bertrand  209:    90    CONTINUE
1.18    ! bertrand  210:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
1.1       bertrand  211:       END IF
                    212: *
                    213:       ZLANHS = VALUE
                    214:       RETURN
                    215: *
                    216: *     End of ZLANHS
                    217: *
                    218:       END

CVSweb interface <joel.bertrand@systella.fr>