Annotation of rpl/lapack/lapack/zlanhs.f, revision 1.10

1.8       bertrand    1: *> \brief \b ZLANHS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLANHS + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhs.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhs.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhs.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          NORM
                     25: *       INTEGER            LDA, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   WORK( * )
                     29: *       COMPLEX*16         A( LDA, * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZLANHS  returns the value of the one norm,  or the Frobenius norm, or
                     39: *> the  infinity norm,  or the  element of  largest absolute value  of a
                     40: *> Hessenberg matrix A.
                     41: *> \endverbatim
                     42: *>
                     43: *> \return ZLANHS
                     44: *> \verbatim
                     45: *>
                     46: *>    ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     47: *>             (
                     48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
                     49: *>             (
                     50: *>             ( normI(A),         NORM = 'I' or 'i'
                     51: *>             (
                     52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
                     53: *>
                     54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
                     55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
                     56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
                     57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
                     58: *> \endverbatim
                     59: *
                     60: *  Arguments:
                     61: *  ==========
                     62: *
                     63: *> \param[in] NORM
                     64: *> \verbatim
                     65: *>          NORM is CHARACTER*1
                     66: *>          Specifies the value to be returned in ZLANHS as described
                     67: *>          above.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] N
                     71: *> \verbatim
                     72: *>          N is INTEGER
                     73: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHS is
                     74: *>          set to zero.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] A
                     78: *> \verbatim
                     79: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     80: *>          The n by n upper Hessenberg matrix A; the part of A below the
                     81: *>          first sub-diagonal is not referenced.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] LDA
                     85: *> \verbatim
                     86: *>          LDA is INTEGER
                     87: *>          The leading dimension of the array A.  LDA >= max(N,1).
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[out] WORK
                     91: *> \verbatim
                     92: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                     93: *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                     94: *>          referenced.
                     95: *> \endverbatim
                     96: *
                     97: *  Authors:
                     98: *  ========
                     99: *
                    100: *> \author Univ. of Tennessee 
                    101: *> \author Univ. of California Berkeley 
                    102: *> \author Univ. of Colorado Denver 
                    103: *> \author NAG Ltd. 
                    104: *
                    105: *> \date November 2011
                    106: *
                    107: *> \ingroup complex16OTHERauxiliary
                    108: *
                    109: *  =====================================================================
1.1       bertrand  110:       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
                    111: *
1.8       bertrand  112: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  113: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    114: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  115: *     November 2011
1.1       bertrand  116: *
                    117: *     .. Scalar Arguments ..
                    118:       CHARACTER          NORM
                    119:       INTEGER            LDA, N
                    120: *     ..
                    121: *     .. Array Arguments ..
                    122:       DOUBLE PRECISION   WORK( * )
                    123:       COMPLEX*16         A( LDA, * )
                    124: *     ..
                    125: *
                    126: * =====================================================================
                    127: *
                    128: *     .. Parameters ..
                    129:       DOUBLE PRECISION   ONE, ZERO
                    130:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    131: *     ..
                    132: *     .. Local Scalars ..
                    133:       INTEGER            I, J
                    134:       DOUBLE PRECISION   SCALE, SUM, VALUE
                    135: *     ..
                    136: *     .. External Functions ..
                    137:       LOGICAL            LSAME
                    138:       EXTERNAL           LSAME
                    139: *     ..
                    140: *     .. External Subroutines ..
                    141:       EXTERNAL           ZLASSQ
                    142: *     ..
                    143: *     .. Intrinsic Functions ..
                    144:       INTRINSIC          ABS, MAX, MIN, SQRT
                    145: *     ..
                    146: *     .. Executable Statements ..
                    147: *
                    148:       IF( N.EQ.0 ) THEN
                    149:          VALUE = ZERO
                    150:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
                    151: *
                    152: *        Find max(abs(A(i,j))).
                    153: *
                    154:          VALUE = ZERO
                    155:          DO 20 J = 1, N
                    156:             DO 10 I = 1, MIN( N, J+1 )
                    157:                VALUE = MAX( VALUE, ABS( A( I, J ) ) )
                    158:    10       CONTINUE
                    159:    20    CONTINUE
                    160:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
                    161: *
                    162: *        Find norm1(A).
                    163: *
                    164:          VALUE = ZERO
                    165:          DO 40 J = 1, N
                    166:             SUM = ZERO
                    167:             DO 30 I = 1, MIN( N, J+1 )
                    168:                SUM = SUM + ABS( A( I, J ) )
                    169:    30       CONTINUE
                    170:             VALUE = MAX( VALUE, SUM )
                    171:    40    CONTINUE
                    172:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
                    173: *
                    174: *        Find normI(A).
                    175: *
                    176:          DO 50 I = 1, N
                    177:             WORK( I ) = ZERO
                    178:    50    CONTINUE
                    179:          DO 70 J = 1, N
                    180:             DO 60 I = 1, MIN( N, J+1 )
                    181:                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
                    182:    60       CONTINUE
                    183:    70    CONTINUE
                    184:          VALUE = ZERO
                    185:          DO 80 I = 1, N
                    186:             VALUE = MAX( VALUE, WORK( I ) )
                    187:    80    CONTINUE
                    188:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
                    189: *
                    190: *        Find normF(A).
                    191: *
                    192:          SCALE = ZERO
                    193:          SUM = ONE
                    194:          DO 90 J = 1, N
                    195:             CALL ZLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
                    196:    90    CONTINUE
                    197:          VALUE = SCALE*SQRT( SUM )
                    198:       END IF
                    199: *
                    200:       ZLANHS = VALUE
                    201:       RETURN
                    202: *
                    203: *     End of ZLANHS
                    204: *
                    205:       END

CVSweb interface <joel.bertrand@systella.fr>