File:  [local] / rpl / lapack / lapack / zlanhp.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:07 2020 UTC (4 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLANHP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          NORM, UPLO
   25: *       INTEGER            N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   WORK( * )
   29: *       COMPLEX*16         AP( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLANHP  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> complex hermitian matrix A,  supplied in packed form.
   41: *> \endverbatim
   42: *>
   43: *> \return ZLANHP
   44: *> \verbatim
   45: *>
   46: *>    ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in ZLANHP as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the upper or lower triangular part of the
   74: *>          hermitian matrix A is supplied.
   75: *>          = 'U':  Upper triangular part of A is supplied
   76: *>          = 'L':  Lower triangular part of A is supplied
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHP is
   83: *>          set to zero.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] AP
   87: *> \verbatim
   88: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   89: *>          The upper or lower triangle of the hermitian matrix A, packed
   90: *>          columnwise in a linear array.  The j-th column of A is stored
   91: *>          in the array AP as follows:
   92: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   93: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   94: *>          Note that the  imaginary parts of the diagonal elements need
   95: *>          not be set and are assumed to be zero.
   96: *> \endverbatim
   97: *>
   98: *> \param[out] WORK
   99: *> \verbatim
  100: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  101: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  102: *>          WORK is not referenced.
  103: *> \endverbatim
  104: *
  105: *  Authors:
  106: *  ========
  107: *
  108: *> \author Univ. of Tennessee
  109: *> \author Univ. of California Berkeley
  110: *> \author Univ. of Colorado Denver
  111: *> \author NAG Ltd.
  112: *
  113: *> \date December 2016
  114: *
  115: *> \ingroup complex16OTHERauxiliary
  116: *
  117: *  =====================================================================
  118:       DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
  119: *
  120: *  -- LAPACK auxiliary routine (version 3.7.0) --
  121: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  122: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  123: *     December 2016
  124: *
  125:       IMPLICIT NONE
  126: *     .. Scalar Arguments ..
  127:       CHARACTER          NORM, UPLO
  128:       INTEGER            N
  129: *     ..
  130: *     .. Array Arguments ..
  131:       DOUBLE PRECISION   WORK( * )
  132:       COMPLEX*16         AP( * )
  133: *     ..
  134: *
  135: * =====================================================================
  136: *
  137: *     .. Parameters ..
  138:       DOUBLE PRECISION   ONE, ZERO
  139:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  140: *     ..
  141: *     .. Local Scalars ..
  142:       INTEGER            I, J, K
  143:       DOUBLE PRECISION   ABSA, SUM, VALUE
  144: *     ..
  145: *     .. Local Arrays ..
  146:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
  147: *     ..
  148: *     .. External Functions ..
  149:       LOGICAL            LSAME, DISNAN
  150:       EXTERNAL           LSAME, DISNAN
  151: *     ..
  152: *     .. External Subroutines ..
  153:       EXTERNAL           ZLASSQ, DCOMBSSQ
  154: *     ..
  155: *     .. Intrinsic Functions ..
  156:       INTRINSIC          ABS, DBLE, SQRT
  157: *     ..
  158: *     .. Executable Statements ..
  159: *
  160:       IF( N.EQ.0 ) THEN
  161:          VALUE = ZERO
  162:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  163: *
  164: *        Find max(abs(A(i,j))).
  165: *
  166:          VALUE = ZERO
  167:          IF( LSAME( UPLO, 'U' ) ) THEN
  168:             K = 0
  169:             DO 20 J = 1, N
  170:                DO 10 I = K + 1, K + J - 1
  171:                   SUM = ABS( AP( I ) )
  172:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  173:    10          CONTINUE
  174:                K = K + J
  175:                SUM = ABS( DBLE( AP( K ) ) )
  176:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  177:    20       CONTINUE
  178:          ELSE
  179:             K = 1
  180:             DO 40 J = 1, N
  181:                SUM = ABS( DBLE( AP( K ) ) )
  182:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  183:                DO 30 I = K + 1, K + N - J
  184:                   SUM = ABS( AP( I ) )
  185:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  186:    30          CONTINUE
  187:                K = K + N - J + 1
  188:    40       CONTINUE
  189:          END IF
  190:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  191:      $         ( NORM.EQ.'1' ) ) THEN
  192: *
  193: *        Find normI(A) ( = norm1(A), since A is hermitian).
  194: *
  195:          VALUE = ZERO
  196:          K = 1
  197:          IF( LSAME( UPLO, 'U' ) ) THEN
  198:             DO 60 J = 1, N
  199:                SUM = ZERO
  200:                DO 50 I = 1, J - 1
  201:                   ABSA = ABS( AP( K ) )
  202:                   SUM = SUM + ABSA
  203:                   WORK( I ) = WORK( I ) + ABSA
  204:                   K = K + 1
  205:    50          CONTINUE
  206:                WORK( J ) = SUM + ABS( DBLE( AP( K ) ) )
  207:                K = K + 1
  208:    60       CONTINUE
  209:             DO 70 I = 1, N
  210:                SUM = WORK( I )
  211:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  212:    70       CONTINUE
  213:          ELSE
  214:             DO 80 I = 1, N
  215:                WORK( I ) = ZERO
  216:    80       CONTINUE
  217:             DO 100 J = 1, N
  218:                SUM = WORK( J ) + ABS( DBLE( AP( K ) ) )
  219:                K = K + 1
  220:                DO 90 I = J + 1, N
  221:                   ABSA = ABS( AP( K ) )
  222:                   SUM = SUM + ABSA
  223:                   WORK( I ) = WORK( I ) + ABSA
  224:                   K = K + 1
  225:    90          CONTINUE
  226:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  227:   100       CONTINUE
  228:          END IF
  229:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  230: *
  231: *        Find normF(A).
  232: *        SSQ(1) is scale
  233: *        SSQ(2) is sum-of-squares
  234: *        For better accuracy, sum each column separately.
  235: *
  236:          SSQ( 1 ) = ZERO
  237:          SSQ( 2 ) = ONE
  238: *
  239: *        Sum off-diagonals
  240: *
  241:          K = 2
  242:          IF( LSAME( UPLO, 'U' ) ) THEN
  243:             DO 110 J = 2, N
  244:                COLSSQ( 1 ) = ZERO
  245:                COLSSQ( 2 ) = ONE
  246:                CALL ZLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  247:                CALL DCOMBSSQ( SSQ, COLSSQ )
  248:                K = K + J
  249:   110       CONTINUE
  250:          ELSE
  251:             DO 120 J = 1, N - 1
  252:                COLSSQ( 1 ) = ZERO
  253:                COLSSQ( 2 ) = ONE
  254:                CALL ZLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  255:                CALL DCOMBSSQ( SSQ, COLSSQ )
  256:                K = K + N - J + 1
  257:   120       CONTINUE
  258:          END IF
  259:          SSQ( 2 ) = 2*SSQ( 2 )
  260: *
  261: *        Sum diagonal
  262: *
  263:          K = 1
  264:          COLSSQ( 1 ) = ZERO
  265:          COLSSQ( 2 ) = ONE
  266:          DO 130 I = 1, N
  267:             IF( DBLE( AP( K ) ).NE.ZERO ) THEN
  268:                ABSA = ABS( DBLE( AP( K ) ) )
  269:                IF( COLSSQ( 1 ).LT.ABSA ) THEN
  270:                   COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
  271:                   COLSSQ( 1 ) = ABSA
  272:                ELSE
  273:                   COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
  274:                END IF
  275:             END IF
  276:             IF( LSAME( UPLO, 'U' ) ) THEN
  277:                K = K + I + 1
  278:             ELSE
  279:                K = K + N - I + 1
  280:             END IF
  281:   130    CONTINUE
  282:          CALL DCOMBSSQ( SSQ, COLSSQ )
  283:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  284:       END IF
  285: *
  286:       ZLANHP = VALUE
  287:       RETURN
  288: *
  289: *     End of ZLANHP
  290: *
  291:       END

CVSweb interface <joel.bertrand@systella.fr>