File:  [local] / rpl / lapack / lapack / zlanhe.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:15 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLANHE
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLANHE + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          NORM, UPLO
   25: *       INTEGER            LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   WORK( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLANHE  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> complex hermitian matrix A.
   41: *> \endverbatim
   42: *>
   43: *> \return ZLANHE
   44: *> \verbatim
   45: *>
   46: *>    ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in ZLANHE as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the upper or lower triangular part of the
   74: *>          hermitian matrix A is to be referenced.
   75: *>          = 'U':  Upper triangular part of A is referenced
   76: *>          = 'L':  Lower triangular part of A is referenced
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is
   83: *>          set to zero.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] A
   87: *> \verbatim
   88: *>          A is COMPLEX*16 array, dimension (LDA,N)
   89: *>          The hermitian matrix A.  If UPLO = 'U', the leading n by n
   90: *>          upper triangular part of A contains the upper triangular part
   91: *>          of the matrix A, and the strictly lower triangular part of A
   92: *>          is not referenced.  If UPLO = 'L', the leading n by n lower
   93: *>          triangular part of A contains the lower triangular part of
   94: *>          the matrix A, and the strictly upper triangular part of A is
   95: *>          not referenced. Note that the imaginary parts of the diagonal
   96: *>          elements need not be set and are assumed to be zero.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>          The leading dimension of the array A.  LDA >= max(N,1).
  103: *> \endverbatim
  104: *>
  105: *> \param[out] WORK
  106: *> \verbatim
  107: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  108: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  109: *>          WORK is not referenced.
  110: *> \endverbatim
  111: *
  112: *  Authors:
  113: *  ========
  114: *
  115: *> \author Univ. of Tennessee 
  116: *> \author Univ. of California Berkeley 
  117: *> \author Univ. of Colorado Denver 
  118: *> \author NAG Ltd. 
  119: *
  120: *> \date November 2011
  121: *
  122: *> \ingroup complex16HEauxiliary
  123: *
  124: *  =====================================================================
  125:       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
  126: *
  127: *  -- LAPACK auxiliary routine (version 3.4.0) --
  128: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  129: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130: *     November 2011
  131: *
  132: *     .. Scalar Arguments ..
  133:       CHARACTER          NORM, UPLO
  134:       INTEGER            LDA, N
  135: *     ..
  136: *     .. Array Arguments ..
  137:       DOUBLE PRECISION   WORK( * )
  138:       COMPLEX*16         A( LDA, * )
  139: *     ..
  140: *
  141: * =====================================================================
  142: *
  143: *     .. Parameters ..
  144:       DOUBLE PRECISION   ONE, ZERO
  145:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  146: *     ..
  147: *     .. Local Scalars ..
  148:       INTEGER            I, J
  149:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
  150: *     ..
  151: *     .. External Functions ..
  152:       LOGICAL            LSAME
  153:       EXTERNAL           LSAME
  154: *     ..
  155: *     .. External Subroutines ..
  156:       EXTERNAL           ZLASSQ
  157: *     ..
  158: *     .. Intrinsic Functions ..
  159:       INTRINSIC          ABS, DBLE, MAX, SQRT
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163:       IF( N.EQ.0 ) THEN
  164:          VALUE = ZERO
  165:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  166: *
  167: *        Find max(abs(A(i,j))).
  168: *
  169:          VALUE = ZERO
  170:          IF( LSAME( UPLO, 'U' ) ) THEN
  171:             DO 20 J = 1, N
  172:                DO 10 I = 1, J - 1
  173:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  174:    10          CONTINUE
  175:                VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
  176:    20       CONTINUE
  177:          ELSE
  178:             DO 40 J = 1, N
  179:                VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
  180:                DO 30 I = J + 1, N
  181:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  182:    30          CONTINUE
  183:    40       CONTINUE
  184:          END IF
  185:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  186:      $         ( NORM.EQ.'1' ) ) THEN
  187: *
  188: *        Find normI(A) ( = norm1(A), since A is hermitian).
  189: *
  190:          VALUE = ZERO
  191:          IF( LSAME( UPLO, 'U' ) ) THEN
  192:             DO 60 J = 1, N
  193:                SUM = ZERO
  194:                DO 50 I = 1, J - 1
  195:                   ABSA = ABS( A( I, J ) )
  196:                   SUM = SUM + ABSA
  197:                   WORK( I ) = WORK( I ) + ABSA
  198:    50          CONTINUE
  199:                WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
  200:    60       CONTINUE
  201:             DO 70 I = 1, N
  202:                VALUE = MAX( VALUE, WORK( I ) )
  203:    70       CONTINUE
  204:          ELSE
  205:             DO 80 I = 1, N
  206:                WORK( I ) = ZERO
  207:    80       CONTINUE
  208:             DO 100 J = 1, N
  209:                SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
  210:                DO 90 I = J + 1, N
  211:                   ABSA = ABS( A( I, J ) )
  212:                   SUM = SUM + ABSA
  213:                   WORK( I ) = WORK( I ) + ABSA
  214:    90          CONTINUE
  215:                VALUE = MAX( VALUE, SUM )
  216:   100       CONTINUE
  217:          END IF
  218:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  219: *
  220: *        Find normF(A).
  221: *
  222:          SCALE = ZERO
  223:          SUM = ONE
  224:          IF( LSAME( UPLO, 'U' ) ) THEN
  225:             DO 110 J = 2, N
  226:                CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  227:   110       CONTINUE
  228:          ELSE
  229:             DO 120 J = 1, N - 1
  230:                CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  231:   120       CONTINUE
  232:          END IF
  233:          SUM = 2*SUM
  234:          DO 130 I = 1, N
  235:             IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
  236:                ABSA = ABS( DBLE( A( I, I ) ) )
  237:                IF( SCALE.LT.ABSA ) THEN
  238:                   SUM = ONE + SUM*( SCALE / ABSA )**2
  239:                   SCALE = ABSA
  240:                ELSE
  241:                   SUM = SUM + ( ABSA / SCALE )**2
  242:                END IF
  243:             END IF
  244:   130    CONTINUE
  245:          VALUE = SCALE*SQRT( SUM )
  246:       END IF
  247: *
  248:       ZLANHE = VALUE
  249:       RETURN
  250: *
  251: *     End of ZLANHE
  252: *
  253:       END

CVSweb interface <joel.bertrand@systella.fr>