File:  [local] / rpl / lapack / lapack / zlanhe.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:29 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLANHE + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          NORM, UPLO
   25: *       INTEGER            LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   WORK( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLANHE  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> complex hermitian matrix A.
   41: *> \endverbatim
   42: *>
   43: *> \return ZLANHE
   44: *> \verbatim
   45: *>
   46: *>    ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in ZLANHE as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the upper or lower triangular part of the
   74: *>          hermitian matrix A is to be referenced.
   75: *>          = 'U':  Upper triangular part of A is referenced
   76: *>          = 'L':  Lower triangular part of A is referenced
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is
   83: *>          set to zero.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] A
   87: *> \verbatim
   88: *>          A is COMPLEX*16 array, dimension (LDA,N)
   89: *>          The hermitian matrix A.  If UPLO = 'U', the leading n by n
   90: *>          upper triangular part of A contains the upper triangular part
   91: *>          of the matrix A, and the strictly lower triangular part of A
   92: *>          is not referenced.  If UPLO = 'L', the leading n by n lower
   93: *>          triangular part of A contains the lower triangular part of
   94: *>          the matrix A, and the strictly upper triangular part of A is
   95: *>          not referenced. Note that the imaginary parts of the diagonal
   96: *>          elements need not be set and are assumed to be zero.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>          The leading dimension of the array A.  LDA >= max(N,1).
  103: *> \endverbatim
  104: *>
  105: *> \param[out] WORK
  106: *> \verbatim
  107: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  108: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  109: *>          WORK is not referenced.
  110: *> \endverbatim
  111: *
  112: *  Authors:
  113: *  ========
  114: *
  115: *> \author Univ. of Tennessee
  116: *> \author Univ. of California Berkeley
  117: *> \author Univ. of Colorado Denver
  118: *> \author NAG Ltd.
  119: *
  120: *> \ingroup complex16HEauxiliary
  121: *
  122: *  =====================================================================
  123:       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
  124: *
  125: *  -- LAPACK auxiliary routine --
  126: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  127: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  128: *
  129: *     .. Scalar Arguments ..
  130:       CHARACTER          NORM, UPLO
  131:       INTEGER            LDA, N
  132: *     ..
  133: *     .. Array Arguments ..
  134:       DOUBLE PRECISION   WORK( * )
  135:       COMPLEX*16         A( LDA, * )
  136: *     ..
  137: *
  138: * =====================================================================
  139: *
  140: *     .. Parameters ..
  141:       DOUBLE PRECISION   ONE, ZERO
  142:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  143: *     ..
  144: *     .. Local Scalars ..
  145:       INTEGER            I, J
  146:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
  147: *     ..
  148: *     .. External Functions ..
  149:       LOGICAL            LSAME, DISNAN
  150:       EXTERNAL           LSAME, DISNAN
  151: *     ..
  152: *     .. External Subroutines ..
  153:       EXTERNAL           ZLASSQ
  154: *     ..
  155: *     .. Intrinsic Functions ..
  156:       INTRINSIC          ABS, DBLE, SQRT
  157: *     ..
  158: *     .. Executable Statements ..
  159: *
  160:       IF( N.EQ.0 ) THEN
  161:          VALUE = ZERO
  162:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  163: *
  164: *        Find max(abs(A(i,j))).
  165: *
  166:          VALUE = ZERO
  167:          IF( LSAME( UPLO, 'U' ) ) THEN
  168:             DO 20 J = 1, N
  169:                DO 10 I = 1, J - 1
  170:                   SUM = ABS( A( I, J ) )
  171:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  172:    10          CONTINUE
  173:                SUM = ABS( DBLE( A( J, J ) ) )
  174:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  175:    20       CONTINUE
  176:          ELSE
  177:             DO 40 J = 1, N
  178:                SUM = ABS( DBLE( A( J, J ) ) )
  179:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  180:                DO 30 I = J + 1, N
  181:                   SUM = ABS( A( I, J ) )
  182:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  183:    30          CONTINUE
  184:    40       CONTINUE
  185:          END IF
  186:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  187:      $         ( NORM.EQ.'1' ) ) THEN
  188: *
  189: *        Find normI(A) ( = norm1(A), since A is hermitian).
  190: *
  191:          VALUE = ZERO
  192:          IF( LSAME( UPLO, 'U' ) ) THEN
  193:             DO 60 J = 1, N
  194:                SUM = ZERO
  195:                DO 50 I = 1, J - 1
  196:                   ABSA = ABS( A( I, J ) )
  197:                   SUM = SUM + ABSA
  198:                   WORK( I ) = WORK( I ) + ABSA
  199:    50          CONTINUE
  200:                WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
  201:    60       CONTINUE
  202:             DO 70 I = 1, N
  203:                SUM = WORK( I )
  204:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  205:    70       CONTINUE
  206:          ELSE
  207:             DO 80 I = 1, N
  208:                WORK( I ) = ZERO
  209:    80       CONTINUE
  210:             DO 100 J = 1, N
  211:                SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
  212:                DO 90 I = J + 1, N
  213:                   ABSA = ABS( A( I, J ) )
  214:                   SUM = SUM + ABSA
  215:                   WORK( I ) = WORK( I ) + ABSA
  216:    90          CONTINUE
  217:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  218:   100       CONTINUE
  219:          END IF
  220:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  221: *
  222: *        Find normF(A).
  223: *
  224:          SCALE = ZERO
  225:          SUM = ONE
  226:          IF( LSAME( UPLO, 'U' ) ) THEN
  227:             DO 110 J = 2, N
  228:                CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  229:   110       CONTINUE
  230:          ELSE
  231:             DO 120 J = 1, N - 1
  232:                CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  233:   120       CONTINUE
  234:          END IF
  235:          SUM = 2*SUM
  236:          DO 130 I = 1, N
  237:             IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
  238:                ABSA = ABS( DBLE( A( I, I ) ) )
  239:                IF( SCALE.LT.ABSA ) THEN
  240:                   SUM = ONE + SUM*( SCALE / ABSA )**2
  241:                   SCALE = ABSA
  242:                ELSE
  243:                   SUM = SUM + ( ABSA / SCALE )**2
  244:                END IF
  245:             END IF
  246:   130    CONTINUE
  247:          VALUE = SCALE*SQRT( SUM )
  248:       END IF
  249: *
  250:       ZLANHE = VALUE
  251:       RETURN
  252: *
  253: *     End of ZLANHE
  254: *
  255:       END

CVSweb interface <joel.bertrand@systella.fr>