File:  [local] / rpl / lapack / lapack / zlanhe.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:38 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          NORM, UPLO
   10:       INTEGER            LDA, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   WORK( * )
   14:       COMPLEX*16         A( LDA, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZLANHE  returns the value of the one norm,  or the Frobenius norm, or
   21: *  the  infinity norm,  or the  element of  largest absolute value  of a
   22: *  complex hermitian matrix A.
   23: *
   24: *  Description
   25: *  ===========
   26: *
   27: *  ZLANHE returns the value
   28: *
   29: *     ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   30: *              (
   31: *              ( norm1(A),         NORM = '1', 'O' or 'o'
   32: *              (
   33: *              ( normI(A),         NORM = 'I' or 'i'
   34: *              (
   35: *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   36: *
   37: *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
   38: *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   39: *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
   40: *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   41: *
   42: *  Arguments
   43: *  =========
   44: *
   45: *  NORM    (input) CHARACTER*1
   46: *          Specifies the value to be returned in ZLANHE as described
   47: *          above.
   48: *
   49: *  UPLO    (input) CHARACTER*1
   50: *          Specifies whether the upper or lower triangular part of the
   51: *          hermitian matrix A is to be referenced.
   52: *          = 'U':  Upper triangular part of A is referenced
   53: *          = 'L':  Lower triangular part of A is referenced
   54: *
   55: *  N       (input) INTEGER
   56: *          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is
   57: *          set to zero.
   58: *
   59: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   60: *          The hermitian matrix A.  If UPLO = 'U', the leading n by n
   61: *          upper triangular part of A contains the upper triangular part
   62: *          of the matrix A, and the strictly lower triangular part of A
   63: *          is not referenced.  If UPLO = 'L', the leading n by n lower
   64: *          triangular part of A contains the lower triangular part of
   65: *          the matrix A, and the strictly upper triangular part of A is
   66: *          not referenced. Note that the imaginary parts of the diagonal
   67: *          elements need not be set and are assumed to be zero.
   68: *
   69: *  LDA     (input) INTEGER
   70: *          The leading dimension of the array A.  LDA >= max(N,1).
   71: *
   72: *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
   73: *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
   74: *          WORK is not referenced.
   75: *
   76: * =====================================================================
   77: *
   78: *     .. Parameters ..
   79:       DOUBLE PRECISION   ONE, ZERO
   80:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
   81: *     ..
   82: *     .. Local Scalars ..
   83:       INTEGER            I, J
   84:       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
   85: *     ..
   86: *     .. External Functions ..
   87:       LOGICAL            LSAME
   88:       EXTERNAL           LSAME
   89: *     ..
   90: *     .. External Subroutines ..
   91:       EXTERNAL           ZLASSQ
   92: *     ..
   93: *     .. Intrinsic Functions ..
   94:       INTRINSIC          ABS, DBLE, MAX, SQRT
   95: *     ..
   96: *     .. Executable Statements ..
   97: *
   98:       IF( N.EQ.0 ) THEN
   99:          VALUE = ZERO
  100:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  101: *
  102: *        Find max(abs(A(i,j))).
  103: *
  104:          VALUE = ZERO
  105:          IF( LSAME( UPLO, 'U' ) ) THEN
  106:             DO 20 J = 1, N
  107:                DO 10 I = 1, J - 1
  108:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  109:    10          CONTINUE
  110:                VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
  111:    20       CONTINUE
  112:          ELSE
  113:             DO 40 J = 1, N
  114:                VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
  115:                DO 30 I = J + 1, N
  116:                   VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  117:    30          CONTINUE
  118:    40       CONTINUE
  119:          END IF
  120:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  121:      $         ( NORM.EQ.'1' ) ) THEN
  122: *
  123: *        Find normI(A) ( = norm1(A), since A is hermitian).
  124: *
  125:          VALUE = ZERO
  126:          IF( LSAME( UPLO, 'U' ) ) THEN
  127:             DO 60 J = 1, N
  128:                SUM = ZERO
  129:                DO 50 I = 1, J - 1
  130:                   ABSA = ABS( A( I, J ) )
  131:                   SUM = SUM + ABSA
  132:                   WORK( I ) = WORK( I ) + ABSA
  133:    50          CONTINUE
  134:                WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
  135:    60       CONTINUE
  136:             DO 70 I = 1, N
  137:                VALUE = MAX( VALUE, WORK( I ) )
  138:    70       CONTINUE
  139:          ELSE
  140:             DO 80 I = 1, N
  141:                WORK( I ) = ZERO
  142:    80       CONTINUE
  143:             DO 100 J = 1, N
  144:                SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
  145:                DO 90 I = J + 1, N
  146:                   ABSA = ABS( A( I, J ) )
  147:                   SUM = SUM + ABSA
  148:                   WORK( I ) = WORK( I ) + ABSA
  149:    90          CONTINUE
  150:                VALUE = MAX( VALUE, SUM )
  151:   100       CONTINUE
  152:          END IF
  153:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  154: *
  155: *        Find normF(A).
  156: *
  157:          SCALE = ZERO
  158:          SUM = ONE
  159:          IF( LSAME( UPLO, 'U' ) ) THEN
  160:             DO 110 J = 2, N
  161:                CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  162:   110       CONTINUE
  163:          ELSE
  164:             DO 120 J = 1, N - 1
  165:                CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  166:   120       CONTINUE
  167:          END IF
  168:          SUM = 2*SUM
  169:          DO 130 I = 1, N
  170:             IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
  171:                ABSA = ABS( DBLE( A( I, I ) ) )
  172:                IF( SCALE.LT.ABSA ) THEN
  173:                   SUM = ONE + SUM*( SCALE / ABSA )**2
  174:                   SCALE = ABSA
  175:                ELSE
  176:                   SUM = SUM + ( ABSA / SCALE )**2
  177:                END IF
  178:             END IF
  179:   130    CONTINUE
  180:          VALUE = SCALE*SQRT( SUM )
  181:       END IF
  182: *
  183:       ZLANHE = VALUE
  184:       RETURN
  185: *
  186: *     End of ZLANHE
  187: *
  188:       END

CVSweb interface <joel.bertrand@systella.fr>