Annotation of rpl/lapack/lapack/zlanhe.f, revision 1.18

1.11      bertrand    1: *> \brief \b ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZLANHE + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
1.15      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          NORM, UPLO
                     25: *       INTEGER            LDA, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   WORK( * )
                     29: *       COMPLEX*16         A( LDA, * )
                     30: *       ..
1.15      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZLANHE  returns the value of the one norm,  or the Frobenius norm, or
                     39: *> the  infinity norm,  or the  element of  largest absolute value  of a
                     40: *> complex hermitian matrix A.
                     41: *> \endverbatim
                     42: *>
                     43: *> \return ZLANHE
                     44: *> \verbatim
                     45: *>
                     46: *>    ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     47: *>             (
                     48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
                     49: *>             (
                     50: *>             ( normI(A),         NORM = 'I' or 'i'
                     51: *>             (
                     52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
                     53: *>
                     54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
                     55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
                     56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
                     57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
                     58: *> \endverbatim
                     59: *
                     60: *  Arguments:
                     61: *  ==========
                     62: *
                     63: *> \param[in] NORM
                     64: *> \verbatim
                     65: *>          NORM is CHARACTER*1
                     66: *>          Specifies the value to be returned in ZLANHE as described
                     67: *>          above.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] UPLO
                     71: *> \verbatim
                     72: *>          UPLO is CHARACTER*1
                     73: *>          Specifies whether the upper or lower triangular part of the
                     74: *>          hermitian matrix A is to be referenced.
                     75: *>          = 'U':  Upper triangular part of A is referenced
                     76: *>          = 'L':  Lower triangular part of A is referenced
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is
                     83: *>          set to zero.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] A
                     87: *> \verbatim
                     88: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     89: *>          The hermitian matrix A.  If UPLO = 'U', the leading n by n
                     90: *>          upper triangular part of A contains the upper triangular part
                     91: *>          of the matrix A, and the strictly lower triangular part of A
                     92: *>          is not referenced.  If UPLO = 'L', the leading n by n lower
                     93: *>          triangular part of A contains the lower triangular part of
                     94: *>          the matrix A, and the strictly upper triangular part of A is
                     95: *>          not referenced. Note that the imaginary parts of the diagonal
                     96: *>          elements need not be set and are assumed to be zero.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDA
                    100: *> \verbatim
                    101: *>          LDA is INTEGER
                    102: *>          The leading dimension of the array A.  LDA >= max(N,1).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[out] WORK
                    106: *> \verbatim
                    107: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                    108: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
                    109: *>          WORK is not referenced.
                    110: *> \endverbatim
                    111: *
                    112: *  Authors:
                    113: *  ========
                    114: *
1.15      bertrand  115: *> \author Univ. of Tennessee
                    116: *> \author Univ. of California Berkeley
                    117: *> \author Univ. of Colorado Denver
                    118: *> \author NAG Ltd.
1.8       bertrand  119: *
1.15      bertrand  120: *> \date December 2016
1.8       bertrand  121: *
                    122: *> \ingroup complex16HEauxiliary
                    123: *
                    124: *  =====================================================================
1.1       bertrand  125:       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
                    126: *
1.15      bertrand  127: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  128: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    129: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  130: *     December 2016
1.1       bertrand  131: *
1.18    ! bertrand  132:       IMPLICIT NONE
1.1       bertrand  133: *     .. Scalar Arguments ..
                    134:       CHARACTER          NORM, UPLO
                    135:       INTEGER            LDA, N
                    136: *     ..
                    137: *     .. Array Arguments ..
                    138:       DOUBLE PRECISION   WORK( * )
                    139:       COMPLEX*16         A( LDA, * )
                    140: *     ..
                    141: *
                    142: * =====================================================================
                    143: *
                    144: *     .. Parameters ..
                    145:       DOUBLE PRECISION   ONE, ZERO
                    146:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    147: *     ..
                    148: *     .. Local Scalars ..
                    149:       INTEGER            I, J
1.18    ! bertrand  150:       DOUBLE PRECISION   ABSA, SUM, VALUE
        !           151: *     ..
        !           152: *     .. Local Arrays ..
        !           153:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
1.1       bertrand  154: *     ..
                    155: *     .. External Functions ..
1.11      bertrand  156:       LOGICAL            LSAME, DISNAN
                    157:       EXTERNAL           LSAME, DISNAN
1.1       bertrand  158: *     ..
                    159: *     .. External Subroutines ..
1.18    ! bertrand  160:       EXTERNAL           ZLASSQ, DCOMBSSQ
1.1       bertrand  161: *     ..
                    162: *     .. Intrinsic Functions ..
1.11      bertrand  163:       INTRINSIC          ABS, DBLE, SQRT
1.1       bertrand  164: *     ..
                    165: *     .. Executable Statements ..
                    166: *
                    167:       IF( N.EQ.0 ) THEN
                    168:          VALUE = ZERO
                    169:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
                    170: *
                    171: *        Find max(abs(A(i,j))).
                    172: *
                    173:          VALUE = ZERO
                    174:          IF( LSAME( UPLO, 'U' ) ) THEN
                    175:             DO 20 J = 1, N
                    176:                DO 10 I = 1, J - 1
1.11      bertrand  177:                   SUM = ABS( A( I, J ) )
                    178:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  179:    10          CONTINUE
1.11      bertrand  180:                SUM = ABS( DBLE( A( J, J ) ) )
                    181:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  182:    20       CONTINUE
                    183:          ELSE
                    184:             DO 40 J = 1, N
1.11      bertrand  185:                SUM = ABS( DBLE( A( J, J ) ) )
                    186:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  187:                DO 30 I = J + 1, N
1.11      bertrand  188:                   SUM = ABS( A( I, J ) )
                    189:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  190:    30          CONTINUE
                    191:    40       CONTINUE
                    192:          END IF
                    193:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
                    194:      $         ( NORM.EQ.'1' ) ) THEN
                    195: *
                    196: *        Find normI(A) ( = norm1(A), since A is hermitian).
                    197: *
                    198:          VALUE = ZERO
                    199:          IF( LSAME( UPLO, 'U' ) ) THEN
                    200:             DO 60 J = 1, N
                    201:                SUM = ZERO
                    202:                DO 50 I = 1, J - 1
                    203:                   ABSA = ABS( A( I, J ) )
                    204:                   SUM = SUM + ABSA
                    205:                   WORK( I ) = WORK( I ) + ABSA
                    206:    50          CONTINUE
                    207:                WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
                    208:    60       CONTINUE
                    209:             DO 70 I = 1, N
1.11      bertrand  210:                SUM = WORK( I )
                    211:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  212:    70       CONTINUE
                    213:          ELSE
                    214:             DO 80 I = 1, N
                    215:                WORK( I ) = ZERO
                    216:    80       CONTINUE
                    217:             DO 100 J = 1, N
                    218:                SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
                    219:                DO 90 I = J + 1, N
                    220:                   ABSA = ABS( A( I, J ) )
                    221:                   SUM = SUM + ABSA
                    222:                   WORK( I ) = WORK( I ) + ABSA
                    223:    90          CONTINUE
1.11      bertrand  224:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
1.1       bertrand  225:   100       CONTINUE
                    226:          END IF
                    227:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
                    228: *
                    229: *        Find normF(A).
1.18    ! bertrand  230: *        SSQ(1) is scale
        !           231: *        SSQ(2) is sum-of-squares
        !           232: *        For better accuracy, sum each column separately.
        !           233: *
        !           234:          SSQ( 1 ) = ZERO
        !           235:          SSQ( 2 ) = ONE
        !           236: *
        !           237: *        Sum off-diagonals
1.1       bertrand  238: *
                    239:          IF( LSAME( UPLO, 'U' ) ) THEN
                    240:             DO 110 J = 2, N
1.18    ! bertrand  241:                COLSSQ( 1 ) = ZERO
        !           242:                COLSSQ( 2 ) = ONE
        !           243:                CALL ZLASSQ( J-1, A( 1, J ), 1,
        !           244:      $                      COLSSQ( 1 ), COLSSQ( 2 ) )
        !           245:                CALL DCOMBSSQ( SSQ, COLSSQ )
1.1       bertrand  246:   110       CONTINUE
                    247:          ELSE
                    248:             DO 120 J = 1, N - 1
1.18    ! bertrand  249:                COLSSQ( 1 ) = ZERO
        !           250:                COLSSQ( 2 ) = ONE
        !           251:                CALL ZLASSQ( N-J, A( J+1, J ), 1,
        !           252:      $                      COLSSQ( 1 ), COLSSQ( 2 ) )
        !           253:                CALL DCOMBSSQ( SSQ, COLSSQ )
1.1       bertrand  254:   120       CONTINUE
                    255:          END IF
1.18    ! bertrand  256:          SSQ( 2 ) = 2*SSQ( 2 )
        !           257: *
        !           258: *        Sum diagonal
        !           259: *
1.1       bertrand  260:          DO 130 I = 1, N
                    261:             IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
                    262:                ABSA = ABS( DBLE( A( I, I ) ) )
1.18    ! bertrand  263:                IF( SSQ( 1 ).LT.ABSA ) THEN
        !           264:                   SSQ( 2 ) = ONE + SSQ( 2 )*( SSQ( 1 ) / ABSA )**2
        !           265:                   SSQ( 1 ) = ABSA
1.1       bertrand  266:                ELSE
1.18    ! bertrand  267:                   SSQ( 2 ) = SSQ( 2 ) + ( ABSA / SSQ( 1 ) )**2
1.1       bertrand  268:                END IF
                    269:             END IF
                    270:   130    CONTINUE
1.18    ! bertrand  271:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
1.1       bertrand  272:       END IF
                    273: *
                    274:       ZLANHE = VALUE
                    275:       RETURN
                    276: *
                    277: *     End of ZLANHE
                    278: *
                    279:       END

CVSweb interface <joel.bertrand@systella.fr>