File:  [local] / rpl / lapack / lapack / zlanhb.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:07 2020 UTC (4 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLANHB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLANHB( NORM, UPLO, N, K, AB, LDAB,
   22: *                        WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          NORM, UPLO
   26: *       INTEGER            K, LDAB, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   WORK( * )
   30: *       COMPLEX*16         AB( LDAB, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZLANHB  returns the value of the one norm,  or the Frobenius norm, or
   40: *> the  infinity norm,  or the element of  largest absolute value  of an
   41: *> n by n hermitian band matrix A,  with k super-diagonals.
   42: *> \endverbatim
   43: *>
   44: *> \return ZLANHB
   45: *> \verbatim
   46: *>
   47: *>    ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   48: *>             (
   49: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   50: *>             (
   51: *>             ( normI(A),         NORM = 'I' or 'i'
   52: *>             (
   53: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   54: *>
   55: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   56: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   57: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   58: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] NORM
   65: *> \verbatim
   66: *>          NORM is CHARACTER*1
   67: *>          Specifies the value to be returned in ZLANHB as described
   68: *>          above.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] UPLO
   72: *> \verbatim
   73: *>          UPLO is CHARACTER*1
   74: *>          Specifies whether the upper or lower triangular part of the
   75: *>          band matrix A is supplied.
   76: *>          = 'U':  Upper triangular
   77: *>          = 'L':  Lower triangular
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is
   84: *>          set to zero.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] K
   88: *> \verbatim
   89: *>          K is INTEGER
   90: *>          The number of super-diagonals or sub-diagonals of the
   91: *>          band matrix A.  K >= 0.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] AB
   95: *> \verbatim
   96: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   97: *>          The upper or lower triangle of the hermitian band matrix A,
   98: *>          stored in the first K+1 rows of AB.  The j-th column of A is
   99: *>          stored in the j-th column of the array AB as follows:
  100: *>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  101: *>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
  102: *>          Note that the imaginary parts of the diagonal elements need
  103: *>          not be set and are assumed to be zero.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDAB
  107: *> \verbatim
  108: *>          LDAB is INTEGER
  109: *>          The leading dimension of the array AB.  LDAB >= K+1.
  110: *> \endverbatim
  111: *>
  112: *> \param[out] WORK
  113: *> \verbatim
  114: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  115: *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  116: *>          WORK is not referenced.
  117: *> \endverbatim
  118: *
  119: *  Authors:
  120: *  ========
  121: *
  122: *> \author Univ. of Tennessee
  123: *> \author Univ. of California Berkeley
  124: *> \author Univ. of Colorado Denver
  125: *> \author NAG Ltd.
  126: *
  127: *> \date December 2016
  128: *
  129: *> \ingroup complex16OTHERauxiliary
  130: *
  131: *  =====================================================================
  132:       DOUBLE PRECISION FUNCTION ZLANHB( NORM, UPLO, N, K, AB, LDAB,
  133:      $                 WORK )
  134: *
  135: *  -- LAPACK auxiliary routine (version 3.7.0) --
  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138: *     December 2016
  139: *
  140:       IMPLICIT NONE
  141: *     .. Scalar Arguments ..
  142:       CHARACTER          NORM, UPLO
  143:       INTEGER            K, LDAB, N
  144: *     ..
  145: *     .. Array Arguments ..
  146:       DOUBLE PRECISION   WORK( * )
  147:       COMPLEX*16         AB( LDAB, * )
  148: *     ..
  149: *
  150: * =====================================================================
  151: *
  152: *     .. Parameters ..
  153:       DOUBLE PRECISION   ONE, ZERO
  154:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  155: *     ..
  156: *     .. Local Scalars ..
  157:       INTEGER            I, J, L
  158:       DOUBLE PRECISION   ABSA, SUM, VALUE
  159: *     ..
  160: *     .. Local Arrays ..
  161:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
  162: *     ..
  163: *     .. External Functions ..
  164:       LOGICAL            LSAME, DISNAN
  165:       EXTERNAL           LSAME, DISNAN
  166: *     ..
  167: *     .. External Subroutines ..
  168:       EXTERNAL           ZLASSQ, DCOMBSSQ
  169: *     ..
  170: *     .. Intrinsic Functions ..
  171:       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
  172: *     ..
  173: *     .. Executable Statements ..
  174: *
  175:       IF( N.EQ.0 ) THEN
  176:          VALUE = ZERO
  177:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  178: *
  179: *        Find max(abs(A(i,j))).
  180: *
  181:          VALUE = ZERO
  182:          IF( LSAME( UPLO, 'U' ) ) THEN
  183:             DO 20 J = 1, N
  184:                DO 10 I = MAX( K+2-J, 1 ), K
  185:                   SUM = ABS( AB( I, J ) )
  186:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  187:    10          CONTINUE
  188:                SUM = ABS( DBLE( AB( K+1, J ) ) )
  189:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  190:    20       CONTINUE
  191:          ELSE
  192:             DO 40 J = 1, N
  193:                SUM = ABS( DBLE( AB( 1, J ) ) )
  194:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  195:                DO 30 I = 2, MIN( N+1-J, K+1 )
  196:                   SUM = ABS( AB( I, J ) )
  197:                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  198:    30          CONTINUE
  199:    40       CONTINUE
  200:          END IF
  201:       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  202:      $         ( NORM.EQ.'1' ) ) THEN
  203: *
  204: *        Find normI(A) ( = norm1(A), since A is hermitian).
  205: *
  206:          VALUE = ZERO
  207:          IF( LSAME( UPLO, 'U' ) ) THEN
  208:             DO 60 J = 1, N
  209:                SUM = ZERO
  210:                L = K + 1 - J
  211:                DO 50 I = MAX( 1, J-K ), J - 1
  212:                   ABSA = ABS( AB( L+I, J ) )
  213:                   SUM = SUM + ABSA
  214:                   WORK( I ) = WORK( I ) + ABSA
  215:    50          CONTINUE
  216:                WORK( J ) = SUM + ABS( DBLE( AB( K+1, J ) ) )
  217:    60       CONTINUE
  218:             DO 70 I = 1, N
  219:                SUM = WORK( I )
  220:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  221:    70       CONTINUE
  222:          ELSE
  223:             DO 80 I = 1, N
  224:                WORK( I ) = ZERO
  225:    80       CONTINUE
  226:             DO 100 J = 1, N
  227:                SUM = WORK( J ) + ABS( DBLE( AB( 1, J ) ) )
  228:                L = 1 - J
  229:                DO 90 I = J + 1, MIN( N, J+K )
  230:                   ABSA = ABS( AB( L+I, J ) )
  231:                   SUM = SUM + ABSA
  232:                   WORK( I ) = WORK( I ) + ABSA
  233:    90          CONTINUE
  234:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  235:   100       CONTINUE
  236:          END IF
  237:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  238: *
  239: *        Find normF(A).
  240: *        SSQ(1) is scale
  241: *        SSQ(2) is sum-of-squares
  242: *        For better accuracy, sum each column separately.
  243: *
  244:          SSQ( 1 ) = ZERO
  245:          SSQ( 2 ) = ONE
  246: *
  247: *        Sum off-diagonals
  248: *
  249:          IF( K.GT.0 ) THEN
  250:             IF( LSAME( UPLO, 'U' ) ) THEN
  251:                DO 110 J = 2, N
  252:                   COLSSQ( 1 ) = ZERO
  253:                   COLSSQ( 2 ) = ONE
  254:                   CALL ZLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
  255:      $                         1, COLSSQ( 1 ), COLSSQ( 2 ) )
  256:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  257:   110          CONTINUE
  258:                L = K + 1
  259:             ELSE
  260:                DO 120 J = 1, N - 1
  261:                   COLSSQ( 1 ) = ZERO
  262:                   COLSSQ( 2 ) = ONE
  263:                   CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
  264:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  265:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  266:   120          CONTINUE
  267:                L = 1
  268:             END IF
  269:             SSQ( 2 ) = 2*SSQ( 2 )
  270:          ELSE
  271:             L = 1
  272:          END IF
  273: *
  274: *        Sum diagonal
  275: *
  276:          COLSSQ( 1 ) = ZERO
  277:          COLSSQ( 2 ) = ONE
  278:          DO 130 J = 1, N
  279:             IF( DBLE( AB( L, J ) ).NE.ZERO ) THEN
  280:                ABSA = ABS( DBLE( AB( L, J ) ) )
  281:                IF( COLSSQ( 1 ).LT.ABSA ) THEN
  282:                   COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
  283:                   COLSSQ( 1 ) = ABSA
  284:                ELSE
  285:                   COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
  286:                END IF
  287:             END IF
  288:   130    CONTINUE
  289:          CALL DCOMBSSQ( SSQ, COLSSQ )
  290:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  291:       END IF
  292: *
  293:       ZLANHB = VALUE
  294:       RETURN
  295: *
  296: *     End of ZLANHB
  297: *
  298:       END

CVSweb interface <joel.bertrand@systella.fr>