File:  [local] / rpl / lapack / lapack / zlangt.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:33 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       DOUBLE PRECISION FUNCTION ZLANGT( NORM, N, DL, D, DU )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          NORM
   10:       INTEGER            N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       COMPLEX*16         D( * ), DL( * ), DU( * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  ZLANGT  returns the value of the one norm,  or the Frobenius norm, or
   20: *  the  infinity norm,  or the  element of  largest absolute value  of a
   21: *  complex tridiagonal matrix A.
   22: *
   23: *  Description
   24: *  ===========
   25: *
   26: *  ZLANGT returns the value
   27: *
   28: *     ZLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   29: *              (
   30: *              ( norm1(A),         NORM = '1', 'O' or 'o'
   31: *              (
   32: *              ( normI(A),         NORM = 'I' or 'i'
   33: *              (
   34: *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   35: *
   36: *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
   37: *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   38: *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
   39: *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   40: *
   41: *  Arguments
   42: *  =========
   43: *
   44: *  NORM    (input) CHARACTER*1
   45: *          Specifies the value to be returned in ZLANGT as described
   46: *          above.
   47: *
   48: *  N       (input) INTEGER
   49: *          The order of the matrix A.  N >= 0.  When N = 0, ZLANGT is
   50: *          set to zero.
   51: *
   52: *  DL      (input) COMPLEX*16 array, dimension (N-1)
   53: *          The (n-1) sub-diagonal elements of A.
   54: *
   55: *  D       (input) COMPLEX*16 array, dimension (N)
   56: *          The diagonal elements of A.
   57: *
   58: *  DU      (input) COMPLEX*16 array, dimension (N-1)
   59: *          The (n-1) super-diagonal elements of A.
   60: *
   61: *  =====================================================================
   62: *
   63: *     .. Parameters ..
   64:       DOUBLE PRECISION   ONE, ZERO
   65:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
   66: *     ..
   67: *     .. Local Scalars ..
   68:       INTEGER            I
   69:       DOUBLE PRECISION   ANORM, SCALE, SUM
   70: *     ..
   71: *     .. External Functions ..
   72:       LOGICAL            LSAME
   73:       EXTERNAL           LSAME
   74: *     ..
   75: *     .. External Subroutines ..
   76:       EXTERNAL           ZLASSQ
   77: *     ..
   78: *     .. Intrinsic Functions ..
   79:       INTRINSIC          ABS, MAX, SQRT
   80: *     ..
   81: *     .. Executable Statements ..
   82: *
   83:       IF( N.LE.0 ) THEN
   84:          ANORM = ZERO
   85:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
   86: *
   87: *        Find max(abs(A(i,j))).
   88: *
   89:          ANORM = ABS( D( N ) )
   90:          DO 10 I = 1, N - 1
   91:             ANORM = MAX( ANORM, ABS( DL( I ) ) )
   92:             ANORM = MAX( ANORM, ABS( D( I ) ) )
   93:             ANORM = MAX( ANORM, ABS( DU( I ) ) )
   94:    10    CONTINUE
   95:       ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
   96: *
   97: *        Find norm1(A).
   98: *
   99:          IF( N.EQ.1 ) THEN
  100:             ANORM = ABS( D( 1 ) )
  101:          ELSE
  102:             ANORM = MAX( ABS( D( 1 ) )+ABS( DL( 1 ) ),
  103:      $              ABS( D( N ) )+ABS( DU( N-1 ) ) )
  104:             DO 20 I = 2, N - 1
  105:                ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DL( I ) )+
  106:      $                 ABS( DU( I-1 ) ) )
  107:    20       CONTINUE
  108:          END IF
  109:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  110: *
  111: *        Find normI(A).
  112: *
  113:          IF( N.EQ.1 ) THEN
  114:             ANORM = ABS( D( 1 ) )
  115:          ELSE
  116:             ANORM = MAX( ABS( D( 1 ) )+ABS( DU( 1 ) ),
  117:      $              ABS( D( N ) )+ABS( DL( N-1 ) ) )
  118:             DO 30 I = 2, N - 1
  119:                ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DU( I ) )+
  120:      $                 ABS( DL( I-1 ) ) )
  121:    30       CONTINUE
  122:          END IF
  123:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  124: *
  125: *        Find normF(A).
  126: *
  127:          SCALE = ZERO
  128:          SUM = ONE
  129:          CALL ZLASSQ( N, D, 1, SCALE, SUM )
  130:          IF( N.GT.1 ) THEN
  131:             CALL ZLASSQ( N-1, DL, 1, SCALE, SUM )
  132:             CALL ZLASSQ( N-1, DU, 1, SCALE, SUM )
  133:          END IF
  134:          ANORM = SCALE*SQRT( SUM )
  135:       END IF
  136: *
  137:       ZLANGT = ANORM
  138:       RETURN
  139: *
  140: *     End of ZLANGT
  141: *
  142:       END

CVSweb interface <joel.bertrand@systella.fr>