File:  [local] / rpl / lapack / lapack / zlange.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       DOUBLE PRECISION FUNCTION ZLANGE( NORM, M, N, A, LDA, WORK )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          NORM
   10:       INTEGER            LDA, M, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   WORK( * )
   14:       COMPLEX*16         A( LDA, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZLANGE  returns the value of the one norm,  or the Frobenius norm, or
   21: *  the  infinity norm,  or the  element of  largest absolute value  of a
   22: *  complex matrix A.
   23: *
   24: *  Description
   25: *  ===========
   26: *
   27: *  ZLANGE returns the value
   28: *
   29: *     ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   30: *              (
   31: *              ( norm1(A),         NORM = '1', 'O' or 'o'
   32: *              (
   33: *              ( normI(A),         NORM = 'I' or 'i'
   34: *              (
   35: *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   36: *
   37: *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
   38: *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   39: *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
   40: *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   41: *
   42: *  Arguments
   43: *  =========
   44: *
   45: *  NORM    (input) CHARACTER*1
   46: *          Specifies the value to be returned in ZLANGE as described
   47: *          above.
   48: *
   49: *  M       (input) INTEGER
   50: *          The number of rows of the matrix A.  M >= 0.  When M = 0,
   51: *          ZLANGE is set to zero.
   52: *
   53: *  N       (input) INTEGER
   54: *          The number of columns of the matrix A.  N >= 0.  When N = 0,
   55: *          ZLANGE is set to zero.
   56: *
   57: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   58: *          The m by n matrix A.
   59: *
   60: *  LDA     (input) INTEGER
   61: *          The leading dimension of the array A.  LDA >= max(M,1).
   62: *
   63: *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
   64: *          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
   65: *          referenced.
   66: *
   67: * =====================================================================
   68: *
   69: *     .. Parameters ..
   70:       DOUBLE PRECISION   ONE, ZERO
   71:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
   72: *     ..
   73: *     .. Local Scalars ..
   74:       INTEGER            I, J
   75:       DOUBLE PRECISION   SCALE, SUM, VALUE
   76: *     ..
   77: *     .. External Functions ..
   78:       LOGICAL            LSAME
   79:       EXTERNAL           LSAME
   80: *     ..
   81: *     .. External Subroutines ..
   82:       EXTERNAL           ZLASSQ
   83: *     ..
   84: *     .. Intrinsic Functions ..
   85:       INTRINSIC          ABS, MAX, MIN, SQRT
   86: *     ..
   87: *     .. Executable Statements ..
   88: *
   89:       IF( MIN( M, N ).EQ.0 ) THEN
   90:          VALUE = ZERO
   91:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
   92: *
   93: *        Find max(abs(A(i,j))).
   94: *
   95:          VALUE = ZERO
   96:          DO 20 J = 1, N
   97:             DO 10 I = 1, M
   98:                VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   99:    10       CONTINUE
  100:    20    CONTINUE
  101:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  102: *
  103: *        Find norm1(A).
  104: *
  105:          VALUE = ZERO
  106:          DO 40 J = 1, N
  107:             SUM = ZERO
  108:             DO 30 I = 1, M
  109:                SUM = SUM + ABS( A( I, J ) )
  110:    30       CONTINUE
  111:             VALUE = MAX( VALUE, SUM )
  112:    40    CONTINUE
  113:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  114: *
  115: *        Find normI(A).
  116: *
  117:          DO 50 I = 1, M
  118:             WORK( I ) = ZERO
  119:    50    CONTINUE
  120:          DO 70 J = 1, N
  121:             DO 60 I = 1, M
  122:                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  123:    60       CONTINUE
  124:    70    CONTINUE
  125:          VALUE = ZERO
  126:          DO 80 I = 1, M
  127:             VALUE = MAX( VALUE, WORK( I ) )
  128:    80    CONTINUE
  129:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  130: *
  131: *        Find normF(A).
  132: *
  133:          SCALE = ZERO
  134:          SUM = ONE
  135:          DO 90 J = 1, N
  136:             CALL ZLASSQ( M, A( 1, J ), 1, SCALE, SUM )
  137:    90    CONTINUE
  138:          VALUE = SCALE*SQRT( SUM )
  139:       END IF
  140: *
  141:       ZLANGE = VALUE
  142:       RETURN
  143: *
  144: *     End of ZLANGE
  145: *
  146:       END

CVSweb interface <joel.bertrand@systella.fr>