File:  [local] / rpl / lapack / lapack / zlamtsqr.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:07 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLAMTSQR
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *      SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
    7: *     $                     LDT, C, LDC, WORK, LWORK, INFO )
    8: *
    9: *
   10: *     .. Scalar Arguments ..
   11: *      CHARACTER         SIDE, TRANS
   12: *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
   13: *     ..
   14: *     .. Array Arguments ..
   15: *      COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
   16: *     $                  T( LDT, * )
   17: *> \par Purpose:
   18: *  =============
   19: *>
   20: *> \verbatim
   21: *>
   22: *>      ZLAMTSQR overwrites the general complex M-by-N matrix C with
   23: *>
   24: *>
   25: *>                 SIDE = 'L'     SIDE = 'R'
   26: *> TRANS = 'N':      Q * C          C * Q
   27: *> TRANS = 'C':      Q**H * C       C * Q**H
   28: *>      where Q is a real orthogonal matrix defined as the product
   29: *>      of blocked elementary reflectors computed by tall skinny
   30: *>      QR factorization (ZLATSQR)
   31: *> \endverbatim
   32: *
   33: *  Arguments:
   34: *  ==========
   35: *
   36: *> \param[in] SIDE
   37: *> \verbatim
   38: *>          SIDE is CHARACTER*1
   39: *>          = 'L': apply Q or Q**H from the Left;
   40: *>          = 'R': apply Q or Q**H from the Right.
   41: *> \endverbatim
   42: *>
   43: *> \param[in] TRANS
   44: *> \verbatim
   45: *>          TRANS is CHARACTER*1
   46: *>          = 'N':  No transpose, apply Q;
   47: *>          = 'C':  Conjugate Transpose, apply Q**H.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] M
   51: *> \verbatim
   52: *>          M is INTEGER
   53: *>          The number of rows of the matrix A.  M >=0.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The number of columns of the matrix C. M >= N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] K
   63: *> \verbatim
   64: *>          K is INTEGER
   65: *>          The number of elementary reflectors whose product defines
   66: *>          the matrix Q.
   67: *>          N >= K >= 0;
   68: *>
   69: *> \endverbatim
   70: *>
   71: *> \param[in] MB
   72: *> \verbatim
   73: *>          MB is INTEGER
   74: *>          The block size to be used in the blocked QR.
   75: *>          MB > N. (must be the same as DLATSQR)
   76: *> \endverbatim
   77: *>
   78: *> \param[in] NB
   79: *> \verbatim
   80: *>          NB is INTEGER
   81: *>          The column block size to be used in the blocked QR.
   82: *>          N >= NB >= 1.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] A
   86: *> \verbatim
   87: *>          A is COMPLEX*16 array, dimension (LDA,K)
   88: *>          The i-th column must contain the vector which defines the
   89: *>          blockedelementary reflector H(i), for i = 1,2,...,k, as
   90: *>          returned by DLATSQR in the first k columns of
   91: *>          its array argument A.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDA
   95: *> \verbatim
   96: *>          LDA is INTEGER
   97: *>          The leading dimension of the array A.
   98: *>          If SIDE = 'L', LDA >= max(1,M);
   99: *>          if SIDE = 'R', LDA >= max(1,N).
  100: *> \endverbatim
  101: *>
  102: *> \param[in] T
  103: *> \verbatim
  104: *>          T is COMPLEX*16 array, dimension
  105: *>          ( N * Number of blocks(CEIL(M-K/MB-K)),
  106: *>          The blocked upper triangular block reflectors stored in compact form
  107: *>          as a sequence of upper triangular blocks.  See below
  108: *>          for further details.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDT
  112: *> \verbatim
  113: *>          LDT is INTEGER
  114: *>          The leading dimension of the array T.  LDT >= NB.
  115: *> \endverbatim
  116: *>
  117: *> \param[in,out] C
  118: *> \verbatim
  119: *>          C is COMPLEX*16 array, dimension (LDC,N)
  120: *>          On entry, the M-by-N matrix C.
  121: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDC
  125: *> \verbatim
  126: *>          LDC is INTEGER
  127: *>          The leading dimension of the array C. LDC >= max(1,M).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] WORK
  131: *> \verbatim
  132: *>         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  133: *>
  134: *> \endverbatim
  135: *> \param[in] LWORK
  136: *> \verbatim
  137: *>          LWORK is INTEGER
  138: *>          The dimension of the array WORK.
  139: *>
  140: *>          If SIDE = 'L', LWORK >= max(1,N)*NB;
  141: *>          if SIDE = 'R', LWORK >= max(1,MB)*NB.
  142: *>          If LWORK = -1, then a workspace query is assumed; the routine
  143: *>          only calculates the optimal size of the WORK array, returns
  144: *>          this value as the first entry of the WORK array, and no error
  145: *>          message related to LWORK is issued by XERBLA.
  146: *>
  147: *> \endverbatim
  148: *> \param[out] INFO
  149: *> \verbatim
  150: *>          INFO is INTEGER
  151: *>          = 0:  successful exit
  152: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  153: *> \endverbatim
  154: *
  155: *  Authors:
  156: *  ========
  157: *
  158: *> \author Univ. of Tennessee
  159: *> \author Univ. of California Berkeley
  160: *> \author Univ. of Colorado Denver
  161: *> \author NAG Ltd.
  162: *
  163: *> \par Further Details:
  164: *  =====================
  165: *>
  166: *> \verbatim
  167: *> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
  168: *> representing Q as a product of other orthogonal matrices
  169: *>   Q = Q(1) * Q(2) * . . . * Q(k)
  170: *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
  171: *>   Q(1) zeros out the subdiagonal entries of rows 1:MB of A
  172: *>   Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
  173: *>   Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
  174: *>   . . .
  175: *>
  176: *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
  177: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  178: *> block reflectors, stored in array T(1:LDT,1:N).
  179: *> For more information see Further Details in GEQRT.
  180: *>
  181: *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
  182: *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
  183: *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
  184: *> The last Q(k) may use fewer rows.
  185: *> For more information see Further Details in TPQRT.
  186: *>
  187: *> For more details of the overall algorithm, see the description of
  188: *> Sequential TSQR in Section 2.2 of [1].
  189: *>
  190: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  191: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  192: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  193: *> \endverbatim
  194: *>
  195: *  =====================================================================
  196:       SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  197:      $        LDT, C, LDC, WORK, LWORK, INFO )
  198: *
  199: *  -- LAPACK computational routine (version 3.7.1) --
  200: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  201: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  202: *     June 2017
  203: *
  204: *     .. Scalar Arguments ..
  205:       CHARACTER         SIDE, TRANS
  206:       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  207: *     ..
  208: *     .. Array Arguments ..
  209:       COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
  210:      $                T( LDT, * )
  211: *     ..
  212: *
  213: * =====================================================================
  214: *
  215: *     ..
  216: *     .. Local Scalars ..
  217:       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  218:       INTEGER    I, II, KK, LW, CTR
  219: *     ..
  220: *     .. External Functions ..
  221:       LOGICAL            LSAME
  222:       EXTERNAL           LSAME
  223: *     .. External Subroutines ..
  224:       EXTERNAL   ZGEMQRT, ZTPMQRT, XERBLA
  225: *     ..
  226: *     .. Executable Statements ..
  227: *
  228: *     Test the input arguments
  229: *
  230:       LQUERY  = LWORK.LT.0
  231:       NOTRAN  = LSAME( TRANS, 'N' )
  232:       TRAN    = LSAME( TRANS, 'C' )
  233:       LEFT    = LSAME( SIDE, 'L' )
  234:       RIGHT   = LSAME( SIDE, 'R' )
  235:       IF (LEFT) THEN
  236:         LW = N * NB
  237:       ELSE
  238:         LW = M * NB
  239:       END IF
  240: *
  241:       INFO = 0
  242:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  243:          INFO = -1
  244:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  245:          INFO = -2
  246:       ELSE IF( M.LT.0 ) THEN
  247:         INFO = -3
  248:       ELSE IF( N.LT.0 ) THEN
  249:         INFO = -4
  250:       ELSE IF( K.LT.0 ) THEN
  251:         INFO = -5
  252:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  253:         INFO = -9
  254:       ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
  255:         INFO = -11
  256:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  257:          INFO = -13
  258:       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  259:         INFO = -15
  260:       END IF
  261: *
  262: *     Determine the block size if it is tall skinny or short and wide
  263: *
  264:       IF( INFO.EQ.0)  THEN
  265:           WORK(1) = LW
  266:       END IF
  267: *
  268:       IF( INFO.NE.0 ) THEN
  269:         CALL XERBLA( 'ZLAMTSQR', -INFO )
  270:         RETURN
  271:       ELSE IF (LQUERY) THEN
  272:        RETURN
  273:       END IF
  274: *
  275: *     Quick return if possible
  276: *
  277:       IF( MIN(M,N,K).EQ.0 ) THEN
  278:         RETURN
  279:       END IF
  280: *
  281:       IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
  282:         CALL ZGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
  283:      $        T, LDT, C, LDC, WORK, INFO)
  284:         RETURN
  285:        END IF
  286: *
  287:       IF(LEFT.AND.NOTRAN) THEN
  288: *
  289: *         Multiply Q to the last block of C
  290: *
  291:          KK = MOD((M-K),(MB-K))
  292:          CTR = (M-K)/(MB-K)
  293:          IF (KK.GT.0) THEN
  294:            II=M-KK+1
  295:            CALL ZTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
  296:      $       T(1, CTR * K + 1),LDT , C(1,1), LDC,
  297:      $       C(II,1), LDC, WORK, INFO )
  298:          ELSE
  299:            II=M+1
  300:          END IF
  301: *
  302:          DO I=II-(MB-K),MB+1,-(MB-K)
  303: *
  304: *         Multiply Q to the current block of C (I:I+MB,1:N)
  305: *
  306:            CTR = CTR - 1
  307:            CALL ZTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
  308:      $         T(1,CTR * K + 1),LDT, C(1,1), LDC,
  309:      $         C(I,1), LDC, WORK, INFO )
  310: 
  311:          END DO
  312: *
  313: *         Multiply Q to the first block of C (1:MB,1:N)
  314: *
  315:          CALL ZGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
  316:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  317: *
  318:       ELSE IF (LEFT.AND.TRAN) THEN
  319: *
  320: *         Multiply Q to the first block of C
  321: *
  322:          KK = MOD((M-K),(MB-K))
  323:          II=M-KK+1
  324:          CTR = 1
  325:          CALL ZGEMQRT('L','C',MB , N, K, NB, A(1,1), LDA, T
  326:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  327: *
  328:          DO I=MB+1,II-MB+K,(MB-K)
  329: *
  330: *         Multiply Q to the current block of C (I:I+MB,1:N)
  331: *
  332:           CALL ZTPMQRT('L','C',MB-K , N, K, 0,NB, A(I,1), LDA,
  333:      $       T(1,CTR * K + 1),LDT, C(1,1), LDC,
  334:      $       C(I,1), LDC, WORK, INFO )
  335:           CTR = CTR + 1
  336: *
  337:          END DO
  338:          IF(II.LE.M) THEN
  339: *
  340: *         Multiply Q to the last block of C
  341: *
  342:           CALL ZTPMQRT('L','C',KK , N, K, 0,NB, A(II,1), LDA,
  343:      $      T(1, CTR * K + 1), LDT, C(1,1), LDC,
  344:      $      C(II,1), LDC, WORK, INFO )
  345: *
  346:          END IF
  347: *
  348:       ELSE IF(RIGHT.AND.TRAN) THEN
  349: *
  350: *         Multiply Q to the last block of C
  351: *
  352:           KK = MOD((N-K),(MB-K))
  353:           CTR = (N-K)/(MB-K)
  354:           IF (KK.GT.0) THEN
  355:             II=N-KK+1
  356:             CALL ZTPMQRT('R','C',M , KK, K, 0, NB, A(II,1), LDA,
  357:      $        T(1,CTR * K + 1), LDT, C(1,1), LDC,
  358:      $        C(1,II), LDC, WORK, INFO )
  359:           ELSE
  360:             II=N+1
  361:           END IF
  362: *
  363:           DO I=II-(MB-K),MB+1,-(MB-K)
  364: *
  365: *         Multiply Q to the current block of C (1:M,I:I+MB)
  366: *
  367:             CTR = CTR - 1
  368:             CALL ZTPMQRT('R','C',M , MB-K, K, 0,NB, A(I,1), LDA,
  369:      $          T(1, CTR * K + 1), LDT, C(1,1), LDC,
  370:      $          C(1,I), LDC, WORK, INFO )
  371: 
  372:           END DO
  373: *
  374: *         Multiply Q to the first block of C (1:M,1:MB)
  375: *
  376:           CALL ZGEMQRT('R','C',M , MB, K, NB, A(1,1), LDA, T
  377:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  378: *
  379:       ELSE IF (RIGHT.AND.NOTRAN) THEN
  380: *
  381: *         Multiply Q to the first block of C
  382: *
  383:          KK = MOD((N-K),(MB-K))
  384:          II=N-KK+1
  385:          CTR = 1
  386:          CALL ZGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
  387:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  388: *
  389:          DO I=MB+1,II-MB+K,(MB-K)
  390: *
  391: *         Multiply Q to the current block of C (1:M,I:I+MB)
  392: *
  393:           CALL ZTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
  394:      $         T(1, CTR * K + 1),LDT, C(1,1), LDC,
  395:      $         C(1,I), LDC, WORK, INFO )
  396:           CTR = CTR + 1
  397: *
  398:          END DO
  399:          IF(II.LE.N) THEN
  400: *
  401: *         Multiply Q to the last block of C
  402: *
  403:           CALL ZTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
  404:      $        T(1,CTR * K + 1),LDT, C(1,1), LDC,
  405:      $        C(1,II), LDC, WORK, INFO )
  406: *
  407:          END IF
  408: *
  409:       END IF
  410: *
  411:       WORK(1) = LW
  412:       RETURN
  413: *
  414: *     End of ZLAMTSQR
  415: *
  416:       END

CVSweb interface <joel.bertrand@systella.fr>