Annotation of rpl/lapack/lapack/zlamtsqr.f, revision 1.1

1.1     ! bertrand    1: *
        !             2: *  Definition:
        !             3: *  ===========
        !             4: *
        !             5: *      SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
        !             6: *     $                     LDT, C, LDC, WORK, LWORK, INFO )
        !             7: *
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10: *      CHARACTER         SIDE, TRANS
        !            11: *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14: *      COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
        !            15: *     $                  T( LDT, * )
        !            16: *> \par Purpose:
        !            17: *  =============
        !            18: *>
        !            19: *> \verbatim
        !            20: *>
        !            21: *>      ZLAMTSQR overwrites the general complex M-by-N matrix C with
        !            22: *>
        !            23: *>
        !            24: *>                 SIDE = 'L'     SIDE = 'R'
        !            25: *> TRANS = 'N':      Q * C          C * Q
        !            26: *> TRANS = 'C':      Q**C * C       C * Q**C
        !            27: *>      where Q is a real orthogonal matrix defined as the product
        !            28: *>      of blocked elementary reflectors computed by tall skinny
        !            29: *>      QR factorization (ZLATSQR)
        !            30: *> \endverbatim
        !            31: *
        !            32: *  Arguments:
        !            33: *  ==========
        !            34: *
        !            35: *> \param[in] SIDE
        !            36: *> \verbatim
        !            37: *>          SIDE is CHARACTER*1
        !            38: *>          = 'L': apply Q or Q**T from the Left;
        !            39: *>          = 'R': apply Q or Q**T from the Right.
        !            40: *> \endverbatim
        !            41: *>
        !            42: *> \param[in] TRANS
        !            43: *> \verbatim
        !            44: *>          TRANS is CHARACTER*1
        !            45: *>          = 'N':  No transpose, apply Q;
        !            46: *>          = 'C':  Conjugate Transpose, apply Q**C.
        !            47: *> \endverbatim
        !            48: *>
        !            49: *> \param[in] M
        !            50: *> \verbatim
        !            51: *>          M is INTEGER
        !            52: *>          The number of rows of the matrix A.  M >=0.
        !            53: *> \endverbatim
        !            54: *>
        !            55: *> \param[in] N
        !            56: *> \verbatim
        !            57: *>          N is INTEGER
        !            58: *>          The number of columns of the matrix C. M >= N >= 0.
        !            59: *> \endverbatim
        !            60: *>
        !            61: *> \param[in] K
        !            62: *> \verbatim
        !            63: *>          K is INTEGER
        !            64: *>          The number of elementary reflectors whose product defines
        !            65: *>          the matrix Q.
        !            66: *>          N >= K >= 0;
        !            67: *>
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] MB
        !            71: *> \verbatim
        !            72: *>          MB is INTEGER
        !            73: *>          The block size to be used in the blocked QR.
        !            74: *>          MB > N. (must be the same as DLATSQR)
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in] NB
        !            78: *> \verbatim
        !            79: *>          NB is INTEGER
        !            80: *>          The column block size to be used in the blocked QR.
        !            81: *>          N >= NB >= 1.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in,out] A
        !            85: *> \verbatim
        !            86: *>          A is COMPLEX*16 array, dimension (LDA,K)
        !            87: *>          The i-th column must contain the vector which defines the
        !            88: *>          blockedelementary reflector H(i), for i = 1,2,...,k, as
        !            89: *>          returned by DLATSQR in the first k columns of
        !            90: *>          its array argument A.
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] LDA
        !            94: *> \verbatim
        !            95: *>          LDA is INTEGER
        !            96: *>          The leading dimension of the array A.
        !            97: *>          If SIDE = 'L', LDA >= max(1,M);
        !            98: *>          if SIDE = 'R', LDA >= max(1,N).
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[in] T
        !           102: *> \verbatim
        !           103: *>          T is COMPLEX*16 array, dimension
        !           104: *>          ( N * Number of blocks(CEIL(M-K/MB-K)),
        !           105: *>          The blocked upper triangular block reflectors stored in compact form
        !           106: *>          as a sequence of upper triangular blocks.  See below
        !           107: *>          for further details.
        !           108: *> \endverbatim
        !           109: *>
        !           110: *> \param[in] LDT
        !           111: *> \verbatim
        !           112: *>          LDT is INTEGER
        !           113: *>          The leading dimension of the array T.  LDT >= NB.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[in,out] C
        !           117: *> \verbatim
        !           118: *>          C is COMPLEX*16 array, dimension (LDC,N)
        !           119: *>          On entry, the M-by-N matrix C.
        !           120: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in] LDC
        !           124: *> \verbatim
        !           125: *>          LDC is INTEGER
        !           126: *>          The leading dimension of the array C. LDC >= max(1,M).
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[out] WORK
        !           130: *> \verbatim
        !           131: *>         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           132: *>
        !           133: *> \endverbatim
        !           134: *> \param[in] LWORK
        !           135: *> \verbatim
        !           136: *>          LWORK is INTEGER
        !           137: *>          The dimension of the array WORK.
        !           138: *>
        !           139: *>          If SIDE = 'L', LWORK >= max(1,N)*NB;
        !           140: *>          if SIDE = 'R', LWORK >= max(1,MB)*NB.
        !           141: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           142: *>          only calculates the optimal size of the WORK array, returns
        !           143: *>          this value as the first entry of the WORK array, and no error
        !           144: *>          message related to LWORK is issued by XERBLA.
        !           145: *>
        !           146: *> \endverbatim
        !           147: *> \param[out] INFO
        !           148: *> \verbatim
        !           149: *>          INFO is INTEGER
        !           150: *>          = 0:  successful exit
        !           151: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           152: *> \endverbatim
        !           153: *
        !           154: *  Authors:
        !           155: *  ========
        !           156: *
        !           157: *> \author Univ. of Tennessee
        !           158: *> \author Univ. of California Berkeley
        !           159: *> \author Univ. of Colorado Denver
        !           160: *> \author NAG Ltd.
        !           161: *
        !           162: *> \par Further Details:
        !           163: *  =====================
        !           164: *>
        !           165: *> \verbatim
        !           166: *> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
        !           167: *> representing Q as a product of other orthogonal matrices
        !           168: *>   Q = Q(1) * Q(2) * . . . * Q(k)
        !           169: *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
        !           170: *>   Q(1) zeros out the subdiagonal entries of rows 1:MB of A
        !           171: *>   Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
        !           172: *>   Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
        !           173: *>   . . .
        !           174: *>
        !           175: *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
        !           176: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
        !           177: *> block reflectors, stored in array T(1:LDT,1:N).
        !           178: *> For more information see Further Details in GEQRT.
        !           179: *>
        !           180: *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
        !           181: *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
        !           182: *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
        !           183: *> The last Q(k) may use fewer rows.
        !           184: *> For more information see Further Details in TPQRT.
        !           185: *>
        !           186: *> For more details of the overall algorithm, see the description of
        !           187: *> Sequential TSQR in Section 2.2 of [1].
        !           188: *>
        !           189: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
        !           190: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
        !           191: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
        !           192: *> \endverbatim
        !           193: *>
        !           194: *  =====================================================================
        !           195:       SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
        !           196:      $        LDT, C, LDC, WORK, LWORK, INFO )
        !           197: *
        !           198: *  -- LAPACK computational routine (version 3.7.0) --
        !           199: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           200: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           201: *     December 2016
        !           202: *
        !           203: *     .. Scalar Arguments ..
        !           204:       CHARACTER         SIDE, TRANS
        !           205:       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
        !           206: *     ..
        !           207: *     .. Array Arguments ..
        !           208:       COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
        !           209:      $                T( LDT, * )
        !           210: *     ..
        !           211: *
        !           212: * =====================================================================
        !           213: *
        !           214: *     ..
        !           215: *     .. Local Scalars ..
        !           216:       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
        !           217:       INTEGER    I, II, KK, LW, CTR
        !           218: *     ..
        !           219: *     .. External Functions ..
        !           220:       LOGICAL            LSAME
        !           221:       EXTERNAL           LSAME
        !           222: *     .. External Subroutines ..
        !           223:       EXTERNAL   ZGEMQRT, ZTPMQRT, XERBLA
        !           224: *     ..
        !           225: *     .. Executable Statements ..
        !           226: *
        !           227: *     Test the input arguments
        !           228: *
        !           229:       LQUERY  = LWORK.LT.0
        !           230:       NOTRAN  = LSAME( TRANS, 'N' )
        !           231:       TRAN    = LSAME( TRANS, 'C' )
        !           232:       LEFT    = LSAME( SIDE, 'L' )
        !           233:       RIGHT   = LSAME( SIDE, 'R' )
        !           234:       IF (LEFT) THEN
        !           235:         LW = N * NB
        !           236:       ELSE
        !           237:         LW = M * NB
        !           238:       END IF
        !           239: *
        !           240:       INFO = 0
        !           241:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
        !           242:          INFO = -1
        !           243:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
        !           244:          INFO = -2
        !           245:       ELSE IF( M.LT.0 ) THEN
        !           246:         INFO = -3
        !           247:       ELSE IF( N.LT.0 ) THEN
        !           248:         INFO = -4
        !           249:       ELSE IF( K.LT.0 ) THEN
        !           250:         INFO = -5
        !           251:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
        !           252:         INFO = -9
        !           253:       ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
        !           254:         INFO = -11
        !           255:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
        !           256:          INFO = -13
        !           257:       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
        !           258:         INFO = -15
        !           259:       END IF
        !           260: *
        !           261: *     Determine the block size if it is tall skinny or short and wide
        !           262: *
        !           263:       IF( INFO.EQ.0)  THEN
        !           264:           WORK(1) = LW
        !           265:       END IF
        !           266: *
        !           267:       IF( INFO.NE.0 ) THEN
        !           268:         CALL XERBLA( 'ZLAMTSQR', -INFO )
        !           269:         RETURN
        !           270:       ELSE IF (LQUERY) THEN
        !           271:        RETURN
        !           272:       END IF
        !           273: *
        !           274: *     Quick return if possible
        !           275: *
        !           276:       IF( MIN(M,N,K).EQ.0 ) THEN
        !           277:         RETURN
        !           278:       END IF
        !           279: *
        !           280:       IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
        !           281:         CALL ZGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
        !           282:      $        T, LDT, C, LDC, WORK, INFO)
        !           283:         RETURN
        !           284:        END IF
        !           285: *
        !           286:       IF(LEFT.AND.NOTRAN) THEN
        !           287: *
        !           288: *         Multiply Q to the last block of C
        !           289: *
        !           290:          KK = MOD((M-K),(MB-K))
        !           291:          CTR = (M-K)/(MB-K)
        !           292:          IF (KK.GT.0) THEN
        !           293:            II=M-KK+1
        !           294:            CALL ZTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
        !           295:      $       T(1, CTR * K + 1),LDT , C(1,1), LDC,
        !           296:      $       C(II,1), LDC, WORK, INFO )
        !           297:          ELSE
        !           298:            II=M+1
        !           299:          END IF
        !           300: *
        !           301:          DO I=II-(MB-K),MB+1,-(MB-K)
        !           302: *
        !           303: *         Multiply Q to the current block of C (I:I+MB,1:N)
        !           304: *
        !           305:            CTR = CTR - 1
        !           306:            CALL ZTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
        !           307:      $         T(1,CTR * K + 1),LDT, C(1,1), LDC,
        !           308:      $         C(I,1), LDC, WORK, INFO )
        !           309: 
        !           310:          END DO
        !           311: *
        !           312: *         Multiply Q to the first block of C (1:MB,1:N)
        !           313: *
        !           314:          CALL ZGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
        !           315:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
        !           316: *
        !           317:       ELSE IF (LEFT.AND.TRAN) THEN
        !           318: *
        !           319: *         Multiply Q to the first block of C
        !           320: *
        !           321:          KK = MOD((M-K),(MB-K))
        !           322:          II=M-KK+1
        !           323:          CTR = 1
        !           324:          CALL ZGEMQRT('L','C',MB , N, K, NB, A(1,1), LDA, T
        !           325:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
        !           326: *
        !           327:          DO I=MB+1,II-MB+K,(MB-K)
        !           328: *
        !           329: *         Multiply Q to the current block of C (I:I+MB,1:N)
        !           330: *
        !           331:           CALL ZTPMQRT('L','C',MB-K , N, K, 0,NB, A(I,1), LDA,
        !           332:      $       T(1,CTR * K + 1),LDT, C(1,1), LDC,
        !           333:      $       C(I,1), LDC, WORK, INFO )
        !           334:           CTR = CTR + 1
        !           335: *
        !           336:          END DO
        !           337:          IF(II.LE.M) THEN
        !           338: *
        !           339: *         Multiply Q to the last block of C
        !           340: *
        !           341:           CALL ZTPMQRT('L','C',KK , N, K, 0,NB, A(II,1), LDA,
        !           342:      $      T(1, CTR * K + 1), LDT, C(1,1), LDC,
        !           343:      $      C(II,1), LDC, WORK, INFO )
        !           344: *
        !           345:          END IF
        !           346: *
        !           347:       ELSE IF(RIGHT.AND.TRAN) THEN
        !           348: *
        !           349: *         Multiply Q to the last block of C
        !           350: *
        !           351:           KK = MOD((N-K),(MB-K))
        !           352:           CTR = (N-K)/(MB-K)
        !           353:           IF (KK.GT.0) THEN
        !           354:             II=N-KK+1
        !           355:             CALL ZTPMQRT('R','C',M , KK, K, 0, NB, A(II,1), LDA,
        !           356:      $        T(1,CTR * K + 1), LDT, C(1,1), LDC,
        !           357:      $        C(1,II), LDC, WORK, INFO )
        !           358:           ELSE
        !           359:             II=N+1
        !           360:           END IF
        !           361: *
        !           362:           DO I=II-(MB-K),MB+1,-(MB-K)
        !           363: *
        !           364: *         Multiply Q to the current block of C (1:M,I:I+MB)
        !           365: *
        !           366:             CTR = CTR - 1
        !           367:             CALL ZTPMQRT('R','C',M , MB-K, K, 0,NB, A(I,1), LDA,
        !           368:      $          T(1, CTR * K + 1), LDT, C(1,1), LDC,
        !           369:      $          C(1,I), LDC, WORK, INFO )
        !           370: 
        !           371:           END DO
        !           372: *
        !           373: *         Multiply Q to the first block of C (1:M,1:MB)
        !           374: *
        !           375:           CALL ZGEMQRT('R','C',M , MB, K, NB, A(1,1), LDA, T
        !           376:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
        !           377: *
        !           378:       ELSE IF (RIGHT.AND.NOTRAN) THEN
        !           379: *
        !           380: *         Multiply Q to the first block of C
        !           381: *
        !           382:          KK = MOD((N-K),(MB-K))
        !           383:          II=N-KK+1
        !           384:          CTR = 1
        !           385:          CALL ZGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
        !           386:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
        !           387: *
        !           388:          DO I=MB+1,II-MB+K,(MB-K)
        !           389: *
        !           390: *         Multiply Q to the current block of C (1:M,I:I+MB)
        !           391: *
        !           392:           CALL ZTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
        !           393:      $         T(1, CTR * K + 1),LDT, C(1,1), LDC,
        !           394:      $         C(1,I), LDC, WORK, INFO )
        !           395:           CTR = CTR + 1
        !           396: *
        !           397:          END DO
        !           398:          IF(II.LE.N) THEN
        !           399: *
        !           400: *         Multiply Q to the last block of C
        !           401: *
        !           402:           CALL ZTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
        !           403:      $        T(1,CTR * K + 1),LDT, C(1,1), LDC,
        !           404:      $        C(1,II), LDC, WORK, INFO )
        !           405: *
        !           406:          END IF
        !           407: *
        !           408:       END IF
        !           409: *
        !           410:       WORK(1) = LW
        !           411:       RETURN
        !           412: *
        !           413: *     End of ZLAMTSQR
        !           414: *
        !           415:       END

CVSweb interface <joel.bertrand@systella.fr>