File:  [local] / rpl / lapack / lapack / zlamswlq.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:07 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLAMSWLQ
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *      SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
    7: *     $                LDT, C, LDC, WORK, LWORK, INFO )
    8: *
    9: *
   10: *     .. Scalar Arguments ..
   11: *      CHARACTER         SIDE, TRANS
   12: *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
   13: *     ..
   14: *     .. Array Arguments ..
   15: *      COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
   16: *     $                  T( LDT, * )
   17: *> \par Purpose:
   18: *  =============
   19: *>
   20: *> \verbatim
   21: *>
   22: *>    ZLAMQRTS overwrites the general real M-by-N matrix C with
   23: *>
   24: *>
   25: *>                    SIDE = 'L'     SIDE = 'R'
   26: *>    TRANS = 'N':      Q * C          C * Q
   27: *>    TRANS = 'C':      Q**H * C       C * Q**H
   28: *>    where Q is a real orthogonal matrix defined as the product of blocked
   29: *>    elementary reflectors computed by short wide LQ
   30: *>    factorization (ZLASWLQ)
   31: *> \endverbatim
   32: *
   33: *  Arguments:
   34: *  ==========
   35: *
   36: *> \param[in] SIDE
   37: *> \verbatim
   38: *>          SIDE is CHARACTER*1
   39: *>          = 'L': apply Q or Q**H from the Left;
   40: *>          = 'R': apply Q or Q**H from the Right.
   41: *> \endverbatim
   42: *>
   43: *> \param[in] TRANS
   44: *> \verbatim
   45: *>          TRANS is CHARACTER*1
   46: *>          = 'N':  No transpose, apply Q;
   47: *>          = 'C':  Conjugate Transpose, apply Q**H.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] M
   51: *> \verbatim
   52: *>          M is INTEGER
   53: *>          The number of rows of the matrix C.  M >=0.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The number of columns of the matrix C. N >= M.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] K
   63: *> \verbatim
   64: *>          K is INTEGER
   65: *>          The number of elementary reflectors whose product defines
   66: *>          the matrix Q.
   67: *>          M >= K >= 0;
   68: *>
   69: *> \endverbatim
   70: *> \param[in] MB
   71: *> \verbatim
   72: *>          MB is INTEGER
   73: *>          The row block size to be used in the blocked QR.
   74: *>          M >= MB >= 1
   75: *> \endverbatim
   76: *>
   77: *> \param[in] NB
   78: *> \verbatim
   79: *>          NB is INTEGER
   80: *>          The column block size to be used in the blocked QR.
   81: *>          NB > M.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] NB
   85: *> \verbatim
   86: *>          NB is INTEGER
   87: *>          The block size to be used in the blocked QR.
   88: *>                MB > M.
   89: *>
   90: *> \endverbatim
   91: *>
   92: *> \param[in] A
   93: *> \verbatim
   94: *>          A is COMPLEX*16 array, dimension
   95: *>                               (LDA,M) if SIDE = 'L',
   96: *>                               (LDA,N) if SIDE = 'R'
   97: *>          The i-th row must contain the vector which defines the blocked
   98: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
   99: *>          ZLASWLQ in the first k rows of its array argument A.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDA
  103: *> \verbatim
  104: *>          LDA is INTEGER
  105: *>          The leading dimension of the array A.
  106: *>          If SIDE = 'L', LDA >= max(1,M);
  107: *>          if SIDE = 'R', LDA >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[in] T
  111: *> \verbatim
  112: *>          T is COMPLEX*16 array, dimension
  113: *>          ( M * Number of blocks(CEIL(N-K/NB-K)),
  114: *>          The blocked upper triangular block reflectors stored in compact form
  115: *>          as a sequence of upper triangular blocks.  See below
  116: *>          for further details.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDT
  120: *> \verbatim
  121: *>          LDT is INTEGER
  122: *>          The leading dimension of the array T.  LDT >= MB.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] C
  126: *> \verbatim
  127: *>          C is COMPLEX*16 array, dimension (LDC,N)
  128: *>          On entry, the M-by-N matrix C.
  129: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDC
  133: *> \verbatim
  134: *>          LDC is INTEGER
  135: *>          The leading dimension of the array C. LDC >= max(1,M).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] WORK
  139: *> \verbatim
  140: *>         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  141: *> \endverbatim
  142: *>
  143: *> \param[in] LWORK
  144: *> \verbatim
  145: *>          LWORK is INTEGER
  146: *>          The dimension of the array WORK.
  147: *>          If SIDE = 'L', LWORK >= max(1,NB) * MB;
  148: *>          if SIDE = 'R', LWORK >= max(1,M) * MB.
  149: *>          If LWORK = -1, then a workspace query is assumed; the routine
  150: *>          only calculates the optimal size of the WORK array, returns
  151: *>          this value as the first entry of the WORK array, and no error
  152: *>          message related to LWORK is issued by XERBLA.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] INFO
  156: *> \verbatim
  157: *>          INFO is INTEGER
  158: *>          = 0:  successful exit
  159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  160: *> \endverbatim
  161: *
  162: *  Authors:
  163: *  ========
  164: *
  165: *> \author Univ. of Tennessee
  166: *> \author Univ. of California Berkeley
  167: *> \author Univ. of Colorado Denver
  168: *> \author NAG Ltd.
  169: *
  170: *> \par Further Details:
  171: *  =====================
  172: *>
  173: *> \verbatim
  174: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
  175: *> representing Q as a product of other orthogonal matrices
  176: *>   Q = Q(1) * Q(2) * . . . * Q(k)
  177: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
  178: *>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
  179: *>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
  180: *>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
  181: *>   . . .
  182: *>
  183: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
  184: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  185: *> block reflectors, stored in array T(1:LDT,1:N).
  186: *> For more information see Further Details in GELQT.
  187: *>
  188: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
  189: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
  190: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
  191: *> The last Q(k) may use fewer rows.
  192: *> For more information see Further Details in TPQRT.
  193: *>
  194: *> For more details of the overall algorithm, see the description of
  195: *> Sequential TSQR in Section 2.2 of [1].
  196: *>
  197: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  198: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  199: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  200: *> \endverbatim
  201: *>
  202: *  =====================================================================
  203:       SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  204:      $    LDT, C, LDC, WORK, LWORK, INFO )
  205: *
  206: *  -- LAPACK computational routine (version 3.7.1) --
  207: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  208: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  209: *     June 2017
  210: *
  211: *     .. Scalar Arguments ..
  212:       CHARACTER         SIDE, TRANS
  213:       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  214: *     ..
  215: *     .. Array Arguments ..
  216:       COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
  217:      $      T( LDT, * )
  218: *     ..
  219: *
  220: * =====================================================================
  221: *
  222: *     ..
  223: *     .. Local Scalars ..
  224:       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  225:       INTEGER    I, II, KK, LW, CTR
  226: *     ..
  227: *     .. External Functions ..
  228:       LOGICAL            LSAME
  229:       EXTERNAL           LSAME
  230: *     .. External Subroutines ..
  231:       EXTERNAL    ZTPMLQT, ZGEMLQT, XERBLA
  232: *     ..
  233: *     .. Executable Statements ..
  234: *
  235: *     Test the input arguments
  236: *
  237:       LQUERY  = LWORK.LT.0
  238:       NOTRAN  = LSAME( TRANS, 'N' )
  239:       TRAN    = LSAME( TRANS, 'C' )
  240:       LEFT    = LSAME( SIDE, 'L' )
  241:       RIGHT   = LSAME( SIDE, 'R' )
  242:       IF (LEFT) THEN
  243:         LW = N * MB
  244:       ELSE
  245:         LW = M * MB
  246:       END IF
  247: *
  248:       INFO = 0
  249:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  250:          INFO = -1
  251:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  252:          INFO = -2
  253:       ELSE IF( M.LT.0 ) THEN
  254:         INFO = -3
  255:       ELSE IF( N.LT.0 ) THEN
  256:         INFO = -4
  257:       ELSE IF( K.LT.0 ) THEN
  258:         INFO = -5
  259:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  260:         INFO = -9
  261:       ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
  262:         INFO = -11
  263:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  264:          INFO = -13
  265:       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  266:         INFO = -15
  267:       END IF
  268: *
  269:       IF( INFO.NE.0 ) THEN
  270:         CALL XERBLA( 'ZLAMSWLQ', -INFO )
  271:         WORK(1) = LW
  272:         RETURN
  273:       ELSE IF (LQUERY) THEN
  274:         WORK(1) = LW
  275:         RETURN
  276:       END IF
  277: *
  278: *     Quick return if possible
  279: *
  280:       IF( MIN(M,N,K).EQ.0 ) THEN
  281:         RETURN
  282:       END IF
  283: *
  284:       IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
  285:         CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
  286:      $        T, LDT, C, LDC, WORK, INFO)
  287:         RETURN
  288:       END IF
  289: *
  290:       IF(LEFT.AND.TRAN) THEN
  291: *
  292: *         Multiply Q to the last block of C
  293: *
  294:           KK = MOD((M-K),(NB-K))
  295:           CTR = (M-K)/(NB-K)
  296: *
  297:           IF (KK.GT.0) THEN
  298:             II=M-KK+1
  299:             CALL ZTPMLQT('L','C',KK , N, K, 0, MB, A(1,II), LDA,
  300:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
  301:      $        C(II,1), LDC, WORK, INFO )
  302:           ELSE
  303:             II=M+1
  304:           END IF
  305: *
  306:           DO I=II-(NB-K),NB+1,-(NB-K)
  307: *
  308: *         Multiply Q to the current block of C (1:M,I:I+NB)
  309: *
  310:             CTR = CTR - 1
  311:             CALL ZTPMLQT('L','C',NB-K , N, K, 0,MB, A(1,I), LDA,
  312:      $          T(1,CTR*K+1),LDT, C(1,1), LDC,
  313:      $          C(I,1), LDC, WORK, INFO )
  314: 
  315:           END DO
  316: *
  317: *         Multiply Q to the first block of C (1:M,1:NB)
  318: *
  319:           CALL ZGEMLQT('L','C',NB , N, K, MB, A(1,1), LDA, T
  320:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  321: *
  322:       ELSE IF (LEFT.AND.NOTRAN) THEN
  323: *
  324: *         Multiply Q to the first block of C
  325: *
  326:          KK = MOD((M-K),(NB-K))
  327:          II=M-KK+1
  328:          CTR = 1
  329:          CALL ZGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T
  330:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  331: *
  332:          DO I=NB+1,II-NB+K,(NB-K)
  333: *
  334: *         Multiply Q to the current block of C (I:I+NB,1:N)
  335: *
  336:           CALL ZTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA,
  337:      $         T(1, CTR * K + 1), LDT, C(1,1), LDC,
  338:      $         C(I,1), LDC, WORK, INFO )
  339:           CTR = CTR + 1
  340: *
  341:          END DO
  342:          IF(II.LE.M) THEN
  343: *
  344: *         Multiply Q to the last block of C
  345: *
  346:           CALL ZTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA,
  347:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
  348:      $        C(II,1), LDC, WORK, INFO )
  349: *
  350:          END IF
  351: *
  352:       ELSE IF(RIGHT.AND.NOTRAN) THEN
  353: *
  354: *         Multiply Q to the last block of C
  355: *
  356:           KK = MOD((N-K),(NB-K))
  357:           CTR = (N-K)/(NB-K)
  358:           IF (KK.GT.0) THEN
  359:             II=N-KK+1
  360:             CALL ZTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA,
  361:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
  362:      $        C(1,II), LDC, WORK, INFO )
  363:           ELSE
  364:             II=N+1
  365:           END IF
  366: *
  367:           DO I=II-(NB-K),NB+1,-(NB-K)
  368: *
  369: *         Multiply Q to the current block of C (1:M,I:I+MB)
  370: *
  371:           CTR = CTR - 1
  372:           CALL ZTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA,
  373:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
  374:      $        C(1,I), LDC, WORK, INFO )
  375: 
  376:           END DO
  377: *
  378: *         Multiply Q to the first block of C (1:M,1:MB)
  379: *
  380:           CALL ZGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T
  381:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  382: *
  383:       ELSE IF (RIGHT.AND.TRAN) THEN
  384: *
  385: *       Multiply Q to the first block of C
  386: *
  387:          KK = MOD((N-K),(NB-K))
  388:          II=N-KK+1
  389:          CALL ZGEMLQT('R','C',M , NB, K, MB, A(1,1), LDA, T
  390:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  391:          CTR = 1
  392: *
  393:          DO I=NB+1,II-NB+K,(NB-K)
  394: *
  395: *         Multiply Q to the current block of C (1:M,I:I+MB)
  396: *
  397:           CALL ZTPMLQT('R','C',M , NB-K, K, 0,MB, A(1,I), LDA,
  398:      $       T(1,CTR *K+1), LDT, C(1,1), LDC,
  399:      $       C(1,I), LDC, WORK, INFO )
  400:           CTR = CTR + 1
  401: *
  402:          END DO
  403:          IF(II.LE.N) THEN
  404: *
  405: *       Multiply Q to the last block of C
  406: *
  407:           CALL ZTPMLQT('R','C',M , KK, K, 0,MB, A(1,II), LDA,
  408:      $      T(1, CTR * K + 1),LDT, C(1,1), LDC,
  409:      $      C(1,II), LDC, WORK, INFO )
  410: *
  411:          END IF
  412: *
  413:       END IF
  414: *
  415:       WORK(1) = LW
  416:       RETURN
  417: *
  418: *     End of ZLAMSWLQ
  419: *
  420:       END

CVSweb interface <joel.bertrand@systella.fr>