File:  [local] / rpl / lapack / lapack / zlamswlq.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:26 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *
    2: *  Definition:
    3: *  ===========
    4: *
    5: *      SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
    6: *     $                LDT, C, LDC, WORK, LWORK, INFO )
    7: *
    8: *
    9: *     .. Scalar Arguments ..
   10: *      CHARACTER         SIDE, TRANS
   11: *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
   12: *     ..
   13: *     .. Array Arguments ..
   14: *      COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
   15: *     $                  T( LDT, * )
   16: *> \par Purpose:
   17: *  =============
   18: *>
   19: *> \verbatim
   20: *>
   21: *>    ZLAMQRTS overwrites the general real M-by-N matrix C with
   22: *>
   23: *>
   24: *>                    SIDE = 'L'     SIDE = 'R'
   25: *>    TRANS = 'N':      Q * C          C * Q
   26: *>    TRANS = 'C':      Q**H * C       C * Q**H
   27: *>    where Q is a real orthogonal matrix defined as the product of blocked
   28: *>    elementary reflectors computed by short wide LQ
   29: *>    factorization (ZLASWLQ)
   30: *> \endverbatim
   31: *
   32: *  Arguments:
   33: *  ==========
   34: *
   35: *> \param[in] SIDE
   36: *> \verbatim
   37: *>          SIDE is CHARACTER*1
   38: *>          = 'L': apply Q or Q**H from the Left;
   39: *>          = 'R': apply Q or Q**H from the Right.
   40: *> \endverbatim
   41: *>
   42: *> \param[in] TRANS
   43: *> \verbatim
   44: *>          TRANS is CHARACTER*1
   45: *>          = 'N':  No transpose, apply Q;
   46: *>          = 'C':  Conjugate Transpose, apply Q**H.
   47: *> \endverbatim
   48: *>
   49: *> \param[in] M
   50: *> \verbatim
   51: *>          M is INTEGER
   52: *>          The number of rows of the matrix C.  M >=0.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The number of columns of the matrix C. N >= M.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] K
   62: *> \verbatim
   63: *>          K is INTEGER
   64: *>          The number of elementary reflectors whose product defines
   65: *>          the matrix Q.
   66: *>          M >= K >= 0;
   67: *>
   68: *> \endverbatim
   69: *> \param[in] MB
   70: *> \verbatim
   71: *>          MB is INTEGER
   72: *>          The row block size to be used in the blocked QR.
   73: *>          M >= MB >= 1
   74: *> \endverbatim
   75: *>
   76: *> \param[in] NB
   77: *> \verbatim
   78: *>          NB is INTEGER
   79: *>          The column block size to be used in the blocked QR.
   80: *>          NB > M.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] NB
   84: *> \verbatim
   85: *>          NB is INTEGER
   86: *>          The block size to be used in the blocked QR.
   87: *>                MB > M.
   88: *>
   89: *> \endverbatim
   90: *>
   91: *> \param[in] A
   92: *> \verbatim
   93: *>          A is COMPLEX*16 array, dimension
   94: *>                               (LDA,M) if SIDE = 'L',
   95: *>                               (LDA,N) if SIDE = 'R'
   96: *>          The i-th row must contain the vector which defines the blocked
   97: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
   98: *>          ZLASWLQ in the first k rows of its array argument A.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDA
  102: *> \verbatim
  103: *>          LDA is INTEGER
  104: *>          The leading dimension of the array A.
  105: *>          If SIDE = 'L', LDA >= max(1,M);
  106: *>          if SIDE = 'R', LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[in] T
  110: *> \verbatim
  111: *>          T is COMPLEX*16 array, dimension
  112: *>          ( M * Number of blocks(CEIL(N-K/NB-K)),
  113: *>          The blocked upper triangular block reflectors stored in compact form
  114: *>          as a sequence of upper triangular blocks.  See below
  115: *>          for further details.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDT
  119: *> \verbatim
  120: *>          LDT is INTEGER
  121: *>          The leading dimension of the array T.  LDT >= MB.
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] C
  125: *> \verbatim
  126: *>          C is COMPLEX*16 array, dimension (LDC,N)
  127: *>          On entry, the M-by-N matrix C.
  128: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDC
  132: *> \verbatim
  133: *>          LDC is INTEGER
  134: *>          The leading dimension of the array C. LDC >= max(1,M).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] WORK
  138: *> \verbatim
  139: *>         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LWORK
  143: *> \verbatim
  144: *>          LWORK is INTEGER
  145: *>          The dimension of the array WORK.
  146: *>          If SIDE = 'L', LWORK >= max(1,NB) * MB;
  147: *>          if SIDE = 'R', LWORK >= max(1,M) * MB.
  148: *>          If LWORK = -1, then a workspace query is assumed; the routine
  149: *>          only calculates the optimal size of the WORK array, returns
  150: *>          this value as the first entry of the WORK array, and no error
  151: *>          message related to LWORK is issued by XERBLA.
  152: *> \endverbatim
  153: *>
  154: *> \param[out] INFO
  155: *> \verbatim
  156: *>          INFO is INTEGER
  157: *>          = 0:  successful exit
  158: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  159: *> \endverbatim
  160: *
  161: *  Authors:
  162: *  ========
  163: *
  164: *> \author Univ. of Tennessee
  165: *> \author Univ. of California Berkeley
  166: *> \author Univ. of Colorado Denver
  167: *> \author NAG Ltd.
  168: *
  169: *> \par Further Details:
  170: *  =====================
  171: *>
  172: *> \verbatim
  173: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
  174: *> representing Q as a product of other orthogonal matrices
  175: *>   Q = Q(1) * Q(2) * . . . * Q(k)
  176: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
  177: *>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
  178: *>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
  179: *>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
  180: *>   . . .
  181: *>
  182: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
  183: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  184: *> block reflectors, stored in array T(1:LDT,1:N).
  185: *> For more information see Further Details in GELQT.
  186: *>
  187: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
  188: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
  189: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
  190: *> The last Q(k) may use fewer rows.
  191: *> For more information see Further Details in TPQRT.
  192: *>
  193: *> For more details of the overall algorithm, see the description of
  194: *> Sequential TSQR in Section 2.2 of [1].
  195: *>
  196: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  197: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  198: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  199: *> \endverbatim
  200: *>
  201: *  =====================================================================
  202:       SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  203:      $    LDT, C, LDC, WORK, LWORK, INFO )
  204: *
  205: *  -- LAPACK computational routine (version 3.7.1) --
  206: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  207: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  208: *     June 2017
  209: *
  210: *     .. Scalar Arguments ..
  211:       CHARACTER         SIDE, TRANS
  212:       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  213: *     ..
  214: *     .. Array Arguments ..
  215:       COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
  216:      $      T( LDT, * )
  217: *     ..
  218: *
  219: * =====================================================================
  220: *
  221: *     ..
  222: *     .. Local Scalars ..
  223:       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  224:       INTEGER    I, II, KK, LW, CTR
  225: *     ..
  226: *     .. External Functions ..
  227:       LOGICAL            LSAME
  228:       EXTERNAL           LSAME
  229: *     .. External Subroutines ..
  230:       EXTERNAL    ZTPMLQT, ZGEMLQT, XERBLA
  231: *     ..
  232: *     .. Executable Statements ..
  233: *
  234: *     Test the input arguments
  235: *
  236:       LQUERY  = LWORK.LT.0
  237:       NOTRAN  = LSAME( TRANS, 'N' )
  238:       TRAN    = LSAME( TRANS, 'C' )
  239:       LEFT    = LSAME( SIDE, 'L' )
  240:       RIGHT   = LSAME( SIDE, 'R' )
  241:       IF (LEFT) THEN
  242:         LW = N * MB
  243:       ELSE
  244:         LW = M * MB
  245:       END IF
  246: *
  247:       INFO = 0
  248:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  249:          INFO = -1
  250:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  251:          INFO = -2
  252:       ELSE IF( M.LT.0 ) THEN
  253:         INFO = -3
  254:       ELSE IF( N.LT.0 ) THEN
  255:         INFO = -4
  256:       ELSE IF( K.LT.0 ) THEN
  257:         INFO = -5
  258:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  259:         INFO = -9
  260:       ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
  261:         INFO = -11
  262:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  263:          INFO = -13
  264:       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  265:         INFO = -15
  266:       END IF
  267: *
  268:       IF( INFO.NE.0 ) THEN
  269:         CALL XERBLA( 'ZLAMSWLQ', -INFO )
  270:         WORK(1) = LW
  271:         RETURN
  272:       ELSE IF (LQUERY) THEN
  273:         WORK(1) = LW
  274:         RETURN
  275:       END IF
  276: *
  277: *     Quick return if possible
  278: *
  279:       IF( MIN(M,N,K).EQ.0 ) THEN
  280:         RETURN
  281:       END IF
  282: *
  283:       IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
  284:         CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
  285:      $        T, LDT, C, LDC, WORK, INFO)
  286:         RETURN
  287:       END IF
  288: *
  289:       IF(LEFT.AND.TRAN) THEN
  290: *
  291: *         Multiply Q to the last block of C
  292: *
  293:           KK = MOD((M-K),(NB-K))
  294:           CTR = (M-K)/(NB-K)
  295: *
  296:           IF (KK.GT.0) THEN
  297:             II=M-KK+1
  298:             CALL ZTPMLQT('L','C',KK , N, K, 0, MB, A(1,II), LDA,
  299:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
  300:      $        C(II,1), LDC, WORK, INFO )
  301:           ELSE
  302:             II=M+1
  303:           END IF
  304: *
  305:           DO I=II-(NB-K),NB+1,-(NB-K)
  306: *
  307: *         Multiply Q to the current block of C (1:M,I:I+NB)
  308: *
  309:             CTR = CTR - 1
  310:             CALL ZTPMLQT('L','C',NB-K , N, K, 0,MB, A(1,I), LDA,
  311:      $          T(1,CTR*K+1),LDT, C(1,1), LDC,
  312:      $          C(I,1), LDC, WORK, INFO )
  313: 
  314:           END DO
  315: *
  316: *         Multiply Q to the first block of C (1:M,1:NB)
  317: *
  318:           CALL ZGEMLQT('L','C',NB , N, K, MB, A(1,1), LDA, T
  319:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  320: *
  321:       ELSE IF (LEFT.AND.NOTRAN) THEN
  322: *
  323: *         Multiply Q to the first block of C
  324: *
  325:          KK = MOD((M-K),(NB-K))
  326:          II=M-KK+1
  327:          CTR = 1
  328:          CALL ZGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T
  329:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
  330: *
  331:          DO I=NB+1,II-NB+K,(NB-K)
  332: *
  333: *         Multiply Q to the current block of C (I:I+NB,1:N)
  334: *
  335:           CALL ZTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA,
  336:      $         T(1, CTR * K + 1), LDT, C(1,1), LDC,
  337:      $         C(I,1), LDC, WORK, INFO )
  338:           CTR = CTR + 1
  339: *
  340:          END DO
  341:          IF(II.LE.M) THEN
  342: *
  343: *         Multiply Q to the last block of C
  344: *
  345:           CALL ZTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA,
  346:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
  347:      $        C(II,1), LDC, WORK, INFO )
  348: *
  349:          END IF
  350: *
  351:       ELSE IF(RIGHT.AND.NOTRAN) THEN
  352: *
  353: *         Multiply Q to the last block of C
  354: *
  355:           KK = MOD((N-K),(NB-K))
  356:           CTR = (N-K)/(NB-K)
  357:           IF (KK.GT.0) THEN
  358:             II=N-KK+1
  359:             CALL ZTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA,
  360:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
  361:      $        C(1,II), LDC, WORK, INFO )
  362:           ELSE
  363:             II=N+1
  364:           END IF
  365: *
  366:           DO I=II-(NB-K),NB+1,-(NB-K)
  367: *
  368: *         Multiply Q to the current block of C (1:M,I:I+MB)
  369: *
  370:           CTR = CTR - 1
  371:           CALL ZTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA,
  372:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
  373:      $        C(1,I), LDC, WORK, INFO )
  374: 
  375:           END DO
  376: *
  377: *         Multiply Q to the first block of C (1:M,1:MB)
  378: *
  379:           CALL ZGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T
  380:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  381: *
  382:       ELSE IF (RIGHT.AND.TRAN) THEN
  383: *
  384: *       Multiply Q to the first block of C
  385: *
  386:          KK = MOD((N-K),(NB-K))
  387:          II=N-KK+1
  388:          CALL ZGEMLQT('R','C',M , NB, K, MB, A(1,1), LDA, T
  389:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
  390:          CTR = 1
  391: *
  392:          DO I=NB+1,II-NB+K,(NB-K)
  393: *
  394: *         Multiply Q to the current block of C (1:M,I:I+MB)
  395: *
  396:           CALL ZTPMLQT('R','C',M , NB-K, K, 0,MB, A(1,I), LDA,
  397:      $       T(1,CTR *K+1), LDT, C(1,1), LDC,
  398:      $       C(1,I), LDC, WORK, INFO )
  399:           CTR = CTR + 1
  400: *
  401:          END DO
  402:          IF(II.LE.N) THEN
  403: *
  404: *       Multiply Q to the last block of C
  405: *
  406:           CALL ZTPMLQT('R','C',M , KK, K, 0,MB, A(1,II), LDA,
  407:      $      T(1, CTR * K + 1),LDT, C(1,1), LDC,
  408:      $      C(1,II), LDC, WORK, INFO )
  409: *
  410:          END IF
  411: *
  412:       END IF
  413: *
  414:       WORK(1) = LW
  415:       RETURN
  416: *
  417: *     End of ZLAMSWLQ
  418: *
  419:       END

CVSweb interface <joel.bertrand@systella.fr>