Annotation of rpl/lapack/lapack/zlamswlq.f, revision 1.2

1.1       bertrand    1: *
                      2: *  Definition:
                      3: *  ===========
                      4: *
                      5: *      SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
                      6: *     $                LDT, C, LDC, WORK, LWORK, INFO )
                      7: *
                      8: *
                      9: *     .. Scalar Arguments ..
                     10: *      CHARACTER         SIDE, TRANS
                     11: *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14: *      COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
                     15: *     $                  T( LDT, * )
                     16: *> \par Purpose:
                     17: *  =============
                     18: *>
                     19: *> \verbatim
                     20: *>
                     21: *>    ZLAMQRTS overwrites the general real M-by-N matrix C with
                     22: *>
                     23: *>
                     24: *>                    SIDE = 'L'     SIDE = 'R'
                     25: *>    TRANS = 'N':      Q * C          C * Q
                     26: *>    TRANS = 'T':      Q**T * C       C * Q**T
                     27: *>    where Q is a real orthogonal matrix defined as the product of blocked
                     28: *>    elementary reflectors computed by short wide LQ
                     29: *>    factorization (ZLASWLQ)
                     30: *> \endverbatim
                     31: *
                     32: *  Arguments:
                     33: *  ==========
                     34: *
                     35: *> \param[in] SIDE
                     36: *> \verbatim
                     37: *>          SIDE is CHARACTER*1
                     38: *>          = 'L': apply Q or Q**T from the Left;
                     39: *>          = 'R': apply Q or Q**T from the Right.
                     40: *> \endverbatim
                     41: *>
                     42: *> \param[in] TRANS
                     43: *> \verbatim
                     44: *>          TRANS is CHARACTER*1
                     45: *>          = 'N':  No transpose, apply Q;
                     46: *>          = 'T':  Transpose, apply Q**T.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] M
                     50: *> \verbatim
                     51: *>          M is INTEGER
                     52: *>          The number of rows of the matrix A.  M >=0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The number of columns of the matrix C. N >= M.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] K
                     62: *> \verbatim
                     63: *>          K is INTEGER
                     64: *>          The number of elementary reflectors whose product defines
                     65: *>          the matrix Q.
                     66: *>          M >= K >= 0;
                     67: *>
                     68: *> \endverbatim
                     69: *> \param[in] MB
                     70: *> \verbatim
                     71: *>          MB is INTEGER
                     72: *>          The row block size to be used in the blocked QR.
                     73: *>          M >= MB >= 1
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] NB
                     77: *> \verbatim
                     78: *>          NB is INTEGER
                     79: *>          The column block size to be used in the blocked QR.
                     80: *>          NB > M.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] NB
                     84: *> \verbatim
                     85: *>          NB is INTEGER
                     86: *>          The block size to be used in the blocked QR.
                     87: *>                MB > M.
                     88: *>
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in,out] A
                     92: *> \verbatim
                     93: *>          A is COMPLEX*16 array, dimension (LDA,K)
                     94: *>          The i-th row must contain the vector which defines the blocked
                     95: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
                     96: *>          DLASWLQ in the first k rows of its array argument A.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDA
                    100: *> \verbatim
                    101: *>          LDA is INTEGER
                    102: *>          The leading dimension of the array A.
                    103: *>          If SIDE = 'L', LDA >= max(1,M);
                    104: *>          if SIDE = 'R', LDA >= max(1,N).
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] T
                    108: *> \verbatim
                    109: *>          T is COMPLEX*16 array, dimension
                    110: *>          ( M * Number of blocks(CEIL(N-K/NB-K)),
                    111: *>          The blocked upper triangular block reflectors stored in compact form
                    112: *>          as a sequence of upper triangular blocks.  See below
                    113: *>          for further details.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDT
                    117: *> \verbatim
                    118: *>          LDT is INTEGER
                    119: *>          The leading dimension of the array T.  LDT >= MB.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in,out] C
                    123: *> \verbatim
                    124: *>          C is COMPLEX*16 array, dimension (LDC,N)
                    125: *>          On entry, the M-by-N matrix C.
                    126: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] LDC
                    130: *> \verbatim
                    131: *>          LDC is INTEGER
                    132: *>          The leading dimension of the array C. LDC >= max(1,M).
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] WORK
                    136: *> \verbatim
                    137: *>         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] LWORK
                    141: *> \verbatim
                    142: *>          LWORK is INTEGER
                    143: *>          The dimension of the array WORK.
                    144: *>          If SIDE = 'L', LWORK >= max(1,NB) * MB;
                    145: *>          if SIDE = 'R', LWORK >= max(1,M) * MB.
                    146: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    147: *>          only calculates the optimal size of the WORK array, returns
                    148: *>          this value as the first entry of the WORK array, and no error
                    149: *>          message related to LWORK is issued by XERBLA.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] INFO
                    153: *> \verbatim
                    154: *>          INFO is INTEGER
                    155: *>          = 0:  successful exit
                    156: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    157: *> \endverbatim
                    158: *
                    159: *  Authors:
                    160: *  ========
                    161: *
                    162: *> \author Univ. of Tennessee
                    163: *> \author Univ. of California Berkeley
                    164: *> \author Univ. of Colorado Denver
                    165: *> \author NAG Ltd.
                    166: *
                    167: *> \par Further Details:
                    168: *  =====================
                    169: *>
                    170: *> \verbatim
                    171: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
                    172: *> representing Q as a product of other orthogonal matrices
                    173: *>   Q = Q(1) * Q(2) * . . . * Q(k)
                    174: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
                    175: *>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
                    176: *>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
                    177: *>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
                    178: *>   . . .
                    179: *>
                    180: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
                    181: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
                    182: *> block reflectors, stored in array T(1:LDT,1:N).
                    183: *> For more information see Further Details in GELQT.
                    184: *>
                    185: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
                    186: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
                    187: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
                    188: *> The last Q(k) may use fewer rows.
                    189: *> For more information see Further Details in TPQRT.
                    190: *>
                    191: *> For more details of the overall algorithm, see the description of
                    192: *> Sequential TSQR in Section 2.2 of [1].
                    193: *>
                    194: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
                    195: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
                    196: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
                    197: *> \endverbatim
                    198: *>
                    199: *  =====================================================================
                    200:       SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
                    201:      $    LDT, C, LDC, WORK, LWORK, INFO )
                    202: *
                    203: *  -- LAPACK computational routine (version 3.7.0) --
                    204: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    205: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    206: *     December 2016
                    207: *
                    208: *     .. Scalar Arguments ..
                    209:       CHARACTER         SIDE, TRANS
                    210:       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC, LW
                    211: *     ..
                    212: *     .. Array Arguments ..
                    213:       COMPLEX*16        A( LDA, * ), WORK( * ), C(LDC, * ),
                    214:      $      T( LDT, * )
                    215: *     ..
                    216: *
                    217: * =====================================================================
                    218: *
                    219: *     ..
                    220: *     .. Local Scalars ..
                    221:       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
                    222:       INTEGER    I, II, KK, CTR
                    223: *     ..
                    224: *     .. External Functions ..
                    225:       LOGICAL            LSAME
                    226:       EXTERNAL           LSAME
                    227: *     .. External Subroutines ..
                    228:       EXTERNAL    ZTPMLQT, ZGEMLQT, XERBLA
                    229: *     ..
                    230: *     .. Executable Statements ..
                    231: *
                    232: *     Test the input arguments
                    233: *
                    234:       LQUERY  = LWORK.LT.0
                    235:       NOTRAN  = LSAME( TRANS, 'N' )
                    236:       TRAN    = LSAME( TRANS, 'C' )
                    237:       LEFT    = LSAME( SIDE, 'L' )
                    238:       RIGHT   = LSAME( SIDE, 'R' )
                    239:       IF (LEFT) THEN
                    240:         LW = N * MB
                    241:       ELSE
                    242:         LW = M * MB
                    243:       END IF
                    244: *
                    245:       INFO = 0
                    246:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
                    247:          INFO = -1
                    248:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
                    249:          INFO = -2
                    250:       ELSE IF( M.LT.0 ) THEN
                    251:         INFO = -3
                    252:       ELSE IF( N.LT.0 ) THEN
                    253:         INFO = -4
                    254:       ELSE IF( K.LT.0 ) THEN
                    255:         INFO = -5
                    256:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
                    257:         INFO = -9
                    258:       ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
                    259:         INFO = -11
                    260:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    261:          INFO = -13
                    262:       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
                    263:         INFO = -15
                    264:       END IF
                    265: *
                    266:       IF( INFO.NE.0 ) THEN
                    267:         CALL XERBLA( 'ZLAMSWLQ', -INFO )
                    268:         WORK(1) = LW
                    269:         RETURN
                    270:       ELSE IF (LQUERY) THEN
                    271:         WORK(1) = LW
                    272:         RETURN
                    273:       END IF
                    274: *
                    275: *     Quick return if possible
                    276: *
                    277:       IF( MIN(M,N,K).EQ.0 ) THEN
                    278:         RETURN
                    279:       END IF
                    280: *
                    281:       IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
                    282:         CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
                    283:      $        T, LDT, C, LDC, WORK, INFO)
                    284:         RETURN
                    285:       END IF
                    286: *
                    287:       IF(LEFT.AND.TRAN) THEN
                    288: *
                    289: *         Multiply Q to the last block of C
                    290: *
                    291:           KK = MOD((M-K),(NB-K))
                    292:           CTR = (M-K)/(NB-K)
                    293: *
                    294:           IF (KK.GT.0) THEN
                    295:             II=M-KK+1
                    296:             CALL ZTPMLQT('L','C',KK , N, K, 0, MB, A(1,II), LDA,
                    297:      $        T(1,CTR*K+1), LDT, C(1,1), LDC,
                    298:      $        C(II,1), LDC, WORK, INFO )
                    299:           ELSE
                    300:             II=M+1
                    301:           END IF
                    302: *
                    303:           DO I=II-(NB-K),NB+1,-(NB-K)
                    304: *
                    305: *         Multiply Q to the current block of C (1:M,I:I+NB)
                    306: *
                    307:             CTR = CTR - 1
                    308:             CALL ZTPMLQT('L','C',NB-K , N, K, 0,MB, A(1,I), LDA,
                    309:      $          T(1,CTR*K+1),LDT, C(1,1), LDC,
                    310:      $          C(I,1), LDC, WORK, INFO )
                    311: 
                    312:           END DO
                    313: *
                    314: *         Multiply Q to the first block of C (1:M,1:NB)
                    315: *
                    316:           CALL ZGEMLQT('L','C',NB , N, K, MB, A(1,1), LDA, T
                    317:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
                    318: *
                    319:       ELSE IF (LEFT.AND.NOTRAN) THEN
                    320: *
                    321: *         Multiply Q to the first block of C
                    322: *
                    323:          KK = MOD((M-K),(NB-K))
                    324:          II=M-KK+1
                    325:          CTR = 1
                    326:          CALL ZGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T
                    327:      $              ,LDT ,C(1,1), LDC, WORK, INFO )
                    328: *
                    329:          DO I=NB+1,II-NB+K,(NB-K)
                    330: *
                    331: *         Multiply Q to the current block of C (I:I+NB,1:N)
                    332: *
                    333:           CALL ZTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA,
                    334:      $         T(1, CTR * K + 1), LDT, C(1,1), LDC,
                    335:      $         C(I,1), LDC, WORK, INFO )
                    336:           CTR = CTR + 1
                    337: *
                    338:          END DO
                    339:          IF(II.LE.M) THEN
                    340: *
                    341: *         Multiply Q to the last block of C
                    342: *
                    343:           CALL ZTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA,
                    344:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
                    345:      $        C(II,1), LDC, WORK, INFO )
                    346: *
                    347:          END IF
                    348: *
                    349:       ELSE IF(RIGHT.AND.NOTRAN) THEN
                    350: *
                    351: *         Multiply Q to the last block of C
                    352: *
                    353:           KK = MOD((N-K),(NB-K))
                    354:           CTR = (N-K)/(NB-K)
                    355:           IF (KK.GT.0) THEN
                    356:             II=N-KK+1
                    357:             CALL ZTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA,
                    358:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
                    359:      $        C(1,II), LDC, WORK, INFO )
                    360:           ELSE
                    361:             II=N+1
                    362:           END IF
                    363: *
                    364:           DO I=II-(NB-K),NB+1,-(NB-K)
                    365: *
                    366: *         Multiply Q to the current block of C (1:M,I:I+MB)
                    367: *
                    368:           CTR = CTR - 1
                    369:           CALL ZTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA,
                    370:      $        T(1, CTR * K + 1), LDT, C(1,1), LDC,
                    371:      $        C(1,I), LDC, WORK, INFO )
                    372: 
                    373:           END DO
                    374: *
                    375: *         Multiply Q to the first block of C (1:M,1:MB)
                    376: *
                    377:           CALL ZGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T
                    378:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
                    379: *
                    380:       ELSE IF (RIGHT.AND.TRAN) THEN
                    381: *
                    382: *       Multiply Q to the first block of C
                    383: *
                    384:          KK = MOD((N-K),(NB-K))
                    385:          II=N-KK+1
                    386:          CALL ZGEMLQT('R','C',M , NB, K, MB, A(1,1), LDA, T
                    387:      $            ,LDT ,C(1,1), LDC, WORK, INFO )
                    388:          CTR = 1
                    389: *
                    390:          DO I=NB+1,II-NB+K,(NB-K)
                    391: *
                    392: *         Multiply Q to the current block of C (1:M,I:I+MB)
                    393: *
                    394:           CALL ZTPMLQT('R','C',M , NB-K, K, 0,MB, A(1,I), LDA,
                    395:      $       T(1,CTR *K+1), LDT, C(1,1), LDC,
                    396:      $       C(1,I), LDC, WORK, INFO )
                    397:           CTR = CTR + 1
                    398: *
                    399:          END DO
                    400:          IF(II.LE.N) THEN
                    401: *
                    402: *       Multiply Q to the last block of C
                    403: *
                    404:           CALL ZTPMLQT('R','C',M , KK, K, 0,MB, A(1,II), LDA,
                    405:      $      T(1, CTR * K + 1),LDT, C(1,1), LDC,
                    406:      $      C(1,II), LDC, WORK, INFO )
                    407: *
                    408:          END IF
                    409: *
                    410:       END IF
                    411: *
                    412:       WORK(1) = LW
                    413:       RETURN
                    414: *
                    415: *     End of ZLAMSWLQ
                    416: *
                    417:       END

CVSweb interface <joel.bertrand@systella.fr>