File:  [local] / rpl / lapack / lapack / zlalsd.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
    2:      $                   RANK, WORK, RWORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          UPLO
   11:       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
   12:       DOUBLE PRECISION   RCOND
   13: *     ..
   14: *     .. Array Arguments ..
   15:       INTEGER            IWORK( * )
   16:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   17:       COMPLEX*16         B( LDB, * ), WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  ZLALSD uses the singular value decomposition of A to solve the least
   24: *  squares problem of finding X to minimize the Euclidean norm of each
   25: *  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
   26: *  are N-by-NRHS. The solution X overwrites B.
   27: *
   28: *  The singular values of A smaller than RCOND times the largest
   29: *  singular value are treated as zero in solving the least squares
   30: *  problem; in this case a minimum norm solution is returned.
   31: *  The actual singular values are returned in D in ascending order.
   32: *
   33: *  This code makes very mild assumptions about floating point
   34: *  arithmetic. It will work on machines with a guard digit in
   35: *  add/subtract, or on those binary machines without guard digits
   36: *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
   37: *  It could conceivably fail on hexadecimal or decimal machines
   38: *  without guard digits, but we know of none.
   39: *
   40: *  Arguments
   41: *  =========
   42: *
   43: *  UPLO   (input) CHARACTER*1
   44: *         = 'U': D and E define an upper bidiagonal matrix.
   45: *         = 'L': D and E define a  lower bidiagonal matrix.
   46: *
   47: *  SMLSIZ (input) INTEGER
   48: *         The maximum size of the subproblems at the bottom of the
   49: *         computation tree.
   50: *
   51: *  N      (input) INTEGER
   52: *         The dimension of the  bidiagonal matrix.  N >= 0.
   53: *
   54: *  NRHS   (input) INTEGER
   55: *         The number of columns of B. NRHS must be at least 1.
   56: *
   57: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
   58: *         On entry D contains the main diagonal of the bidiagonal
   59: *         matrix. On exit, if INFO = 0, D contains its singular values.
   60: *
   61: *  E      (input/output) DOUBLE PRECISION array, dimension (N-1)
   62: *         Contains the super-diagonal entries of the bidiagonal matrix.
   63: *         On exit, E has been destroyed.
   64: *
   65: *  B      (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
   66: *         On input, B contains the right hand sides of the least
   67: *         squares problem. On output, B contains the solution X.
   68: *
   69: *  LDB    (input) INTEGER
   70: *         The leading dimension of B in the calling subprogram.
   71: *         LDB must be at least max(1,N).
   72: *
   73: *  RCOND  (input) DOUBLE PRECISION
   74: *         The singular values of A less than or equal to RCOND times
   75: *         the largest singular value are treated as zero in solving
   76: *         the least squares problem. If RCOND is negative,
   77: *         machine precision is used instead.
   78: *         For example, if diag(S)*X=B were the least squares problem,
   79: *         where diag(S) is a diagonal matrix of singular values, the
   80: *         solution would be X(i) = B(i) / S(i) if S(i) is greater than
   81: *         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
   82: *         RCOND*max(S).
   83: *
   84: *  RANK   (output) INTEGER
   85: *         The number of singular values of A greater than RCOND times
   86: *         the largest singular value.
   87: *
   88: *  WORK   (workspace) COMPLEX*16 array, dimension at least
   89: *         (N * NRHS).
   90: *
   91: *  RWORK  (workspace) DOUBLE PRECISION array, dimension at least
   92: *         (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + (SMLSIZ+1)**2),
   93: *         where
   94: *         NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
   95: *
   96: *  IWORK  (workspace) INTEGER array, dimension at least
   97: *         (3*N*NLVL + 11*N).
   98: *
   99: *  INFO   (output) INTEGER
  100: *         = 0:  successful exit.
  101: *         < 0:  if INFO = -i, the i-th argument had an illegal value.
  102: *         > 0:  The algorithm failed to compute an singular value while
  103: *               working on the submatrix lying in rows and columns
  104: *               INFO/(N+1) through MOD(INFO,N+1).
  105: *
  106: *  Further Details
  107: *  ===============
  108: *
  109: *  Based on contributions by
  110: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  111: *       California at Berkeley, USA
  112: *     Osni Marques, LBNL/NERSC, USA
  113: *
  114: *  =====================================================================
  115: *
  116: *     .. Parameters ..
  117:       DOUBLE PRECISION   ZERO, ONE, TWO
  118:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  119:       COMPLEX*16         CZERO
  120:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
  121: *     ..
  122: *     .. Local Scalars ..
  123:       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
  124:      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,
  125:      $                   IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,
  126:      $                   JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,
  127:      $                   PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,
  128:      $                   U, VT, Z
  129:       DOUBLE PRECISION   CS, EPS, ORGNRM, RCND, R, SN, TOL
  130: *     ..
  131: *     .. External Functions ..
  132:       INTEGER            IDAMAX
  133:       DOUBLE PRECISION   DLAMCH, DLANST
  134:       EXTERNAL           IDAMAX, DLAMCH, DLANST
  135: *     ..
  136: *     .. External Subroutines ..
  137:       EXTERNAL           DGEMM, DLARTG, DLASCL, DLASDA, DLASDQ, DLASET,
  138:      $                   DLASRT, XERBLA, ZCOPY, ZDROT, ZLACPY, ZLALSA,
  139:      $                   ZLASCL, ZLASET
  140: *     ..
  141: *     .. Intrinsic Functions ..
  142:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, LOG, SIGN
  143: *     ..
  144: *     .. Executable Statements ..
  145: *
  146: *     Test the input parameters.
  147: *
  148:       INFO = 0
  149: *
  150:       IF( N.LT.0 ) THEN
  151:          INFO = -3
  152:       ELSE IF( NRHS.LT.1 ) THEN
  153:          INFO = -4
  154:       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
  155:          INFO = -8
  156:       END IF
  157:       IF( INFO.NE.0 ) THEN
  158:          CALL XERBLA( 'ZLALSD', -INFO )
  159:          RETURN
  160:       END IF
  161: *
  162:       EPS = DLAMCH( 'Epsilon' )
  163: *
  164: *     Set up the tolerance.
  165: *
  166:       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
  167:          RCND = EPS
  168:       ELSE
  169:          RCND = RCOND
  170:       END IF
  171: *
  172:       RANK = 0
  173: *
  174: *     Quick return if possible.
  175: *
  176:       IF( N.EQ.0 ) THEN
  177:          RETURN
  178:       ELSE IF( N.EQ.1 ) THEN
  179:          IF( D( 1 ).EQ.ZERO ) THEN
  180:             CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B, LDB )
  181:          ELSE
  182:             RANK = 1
  183:             CALL ZLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
  184:             D( 1 ) = ABS( D( 1 ) )
  185:          END IF
  186:          RETURN
  187:       END IF
  188: *
  189: *     Rotate the matrix if it is lower bidiagonal.
  190: *
  191:       IF( UPLO.EQ.'L' ) THEN
  192:          DO 10 I = 1, N - 1
  193:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  194:             D( I ) = R
  195:             E( I ) = SN*D( I+1 )
  196:             D( I+1 ) = CS*D( I+1 )
  197:             IF( NRHS.EQ.1 ) THEN
  198:                CALL ZDROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
  199:             ELSE
  200:                RWORK( I*2-1 ) = CS
  201:                RWORK( I*2 ) = SN
  202:             END IF
  203:    10    CONTINUE
  204:          IF( NRHS.GT.1 ) THEN
  205:             DO 30 I = 1, NRHS
  206:                DO 20 J = 1, N - 1
  207:                   CS = RWORK( J*2-1 )
  208:                   SN = RWORK( J*2 )
  209:                   CALL ZDROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
  210:    20          CONTINUE
  211:    30       CONTINUE
  212:          END IF
  213:       END IF
  214: *
  215: *     Scale.
  216: *
  217:       NM1 = N - 1
  218:       ORGNRM = DLANST( 'M', N, D, E )
  219:       IF( ORGNRM.EQ.ZERO ) THEN
  220:          CALL ZLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )
  221:          RETURN
  222:       END IF
  223: *
  224:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  225:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
  226: *
  227: *     If N is smaller than the minimum divide size SMLSIZ, then solve
  228: *     the problem with another solver.
  229: *
  230:       IF( N.LE.SMLSIZ ) THEN
  231:          IRWU = 1
  232:          IRWVT = IRWU + N*N
  233:          IRWWRK = IRWVT + N*N
  234:          IRWRB = IRWWRK
  235:          IRWIB = IRWRB + N*NRHS
  236:          IRWB = IRWIB + N*NRHS
  237:          CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )
  238:          CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )
  239:          CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, RWORK( IRWVT ), N,
  240:      $                RWORK( IRWU ), N, RWORK( IRWWRK ), 1,
  241:      $                RWORK( IRWWRK ), INFO )
  242:          IF( INFO.NE.0 ) THEN
  243:             RETURN
  244:          END IF
  245: *
  246: *        In the real version, B is passed to DLASDQ and multiplied
  247: *        internally by Q'. Here B is complex and that product is
  248: *        computed below in two steps (real and imaginary parts).
  249: *
  250:          J = IRWB - 1
  251:          DO 50 JCOL = 1, NRHS
  252:             DO 40 JROW = 1, N
  253:                J = J + 1
  254:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
  255:    40       CONTINUE
  256:    50    CONTINUE
  257:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
  258:      $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
  259:          J = IRWB - 1
  260:          DO 70 JCOL = 1, NRHS
  261:             DO 60 JROW = 1, N
  262:                J = J + 1
  263:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  264:    60       CONTINUE
  265:    70    CONTINUE
  266:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
  267:      $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
  268:          JREAL = IRWRB - 1
  269:          JIMAG = IRWIB - 1
  270:          DO 90 JCOL = 1, NRHS
  271:             DO 80 JROW = 1, N
  272:                JREAL = JREAL + 1
  273:                JIMAG = JIMAG + 1
  274:                B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  275:      $                           RWORK( JIMAG ) )
  276:    80       CONTINUE
  277:    90    CONTINUE
  278: *
  279:          TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  280:          DO 100 I = 1, N
  281:             IF( D( I ).LE.TOL ) THEN
  282:                CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  283:             ELSE
  284:                CALL ZLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
  285:      $                      LDB, INFO )
  286:                RANK = RANK + 1
  287:             END IF
  288:   100    CONTINUE
  289: *
  290: *        Since B is complex, the following call to DGEMM is performed
  291: *        in two steps (real and imaginary parts). That is for V * B
  292: *        (in the real version of the code V' is stored in WORK).
  293: *
  294: *        CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
  295: *    $               WORK( NWORK ), N )
  296: *
  297:          J = IRWB - 1
  298:          DO 120 JCOL = 1, NRHS
  299:             DO 110 JROW = 1, N
  300:                J = J + 1
  301:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
  302:   110       CONTINUE
  303:   120    CONTINUE
  304:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
  305:      $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
  306:          J = IRWB - 1
  307:          DO 140 JCOL = 1, NRHS
  308:             DO 130 JROW = 1, N
  309:                J = J + 1
  310:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  311:   130       CONTINUE
  312:   140    CONTINUE
  313:          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
  314:      $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
  315:          JREAL = IRWRB - 1
  316:          JIMAG = IRWIB - 1
  317:          DO 160 JCOL = 1, NRHS
  318:             DO 150 JROW = 1, N
  319:                JREAL = JREAL + 1
  320:                JIMAG = JIMAG + 1
  321:                B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  322:      $                           RWORK( JIMAG ) )
  323:   150       CONTINUE
  324:   160    CONTINUE
  325: *
  326: *        Unscale.
  327: *
  328:          CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  329:          CALL DLASRT( 'D', N, D, INFO )
  330:          CALL ZLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  331: *
  332:          RETURN
  333:       END IF
  334: *
  335: *     Book-keeping and setting up some constants.
  336: *
  337:       NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  338: *
  339:       SMLSZP = SMLSIZ + 1
  340: *
  341:       U = 1
  342:       VT = 1 + SMLSIZ*N
  343:       DIFL = VT + SMLSZP*N
  344:       DIFR = DIFL + NLVL*N
  345:       Z = DIFR + NLVL*N*2
  346:       C = Z + NLVL*N
  347:       S = C + N
  348:       POLES = S + N
  349:       GIVNUM = POLES + 2*NLVL*N
  350:       NRWORK = GIVNUM + 2*NLVL*N
  351:       BX = 1
  352: *
  353:       IRWRB = NRWORK
  354:       IRWIB = IRWRB + SMLSIZ*NRHS
  355:       IRWB = IRWIB + SMLSIZ*NRHS
  356: *
  357:       SIZEI = 1 + N
  358:       K = SIZEI + N
  359:       GIVPTR = K + N
  360:       PERM = GIVPTR + N
  361:       GIVCOL = PERM + NLVL*N
  362:       IWK = GIVCOL + NLVL*N*2
  363: *
  364:       ST = 1
  365:       SQRE = 0
  366:       ICMPQ1 = 1
  367:       ICMPQ2 = 0
  368:       NSUB = 0
  369: *
  370:       DO 170 I = 1, N
  371:          IF( ABS( D( I ) ).LT.EPS ) THEN
  372:             D( I ) = SIGN( EPS, D( I ) )
  373:          END IF
  374:   170 CONTINUE
  375: *
  376:       DO 240 I = 1, NM1
  377:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  378:             NSUB = NSUB + 1
  379:             IWORK( NSUB ) = ST
  380: *
  381: *           Subproblem found. First determine its size and then
  382: *           apply divide and conquer on it.
  383: *
  384:             IF( I.LT.NM1 ) THEN
  385: *
  386: *              A subproblem with E(I) small for I < NM1.
  387: *
  388:                NSIZE = I - ST + 1
  389:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  390:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  391: *
  392: *              A subproblem with E(NM1) not too small but I = NM1.
  393: *
  394:                NSIZE = N - ST + 1
  395:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  396:             ELSE
  397: *
  398: *              A subproblem with E(NM1) small. This implies an
  399: *              1-by-1 subproblem at D(N), which is not solved
  400: *              explicitly.
  401: *
  402:                NSIZE = I - ST + 1
  403:                IWORK( SIZEI+NSUB-1 ) = NSIZE
  404:                NSUB = NSUB + 1
  405:                IWORK( NSUB ) = N
  406:                IWORK( SIZEI+NSUB-1 ) = 1
  407:                CALL ZCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
  408:             END IF
  409:             ST1 = ST - 1
  410:             IF( NSIZE.EQ.1 ) THEN
  411: *
  412: *              This is a 1-by-1 subproblem and is not solved
  413: *              explicitly.
  414: *
  415:                CALL ZCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
  416:             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  417: *
  418: *              This is a small subproblem and is solved by DLASDQ.
  419: *
  420:                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  421:      $                      RWORK( VT+ST1 ), N )
  422:                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  423:      $                      RWORK( U+ST1 ), N )
  424:                CALL DLASDQ( 'U', 0, NSIZE, NSIZE, NSIZE, 0, D( ST ),
  425:      $                      E( ST ), RWORK( VT+ST1 ), N, RWORK( U+ST1 ),
  426:      $                      N, RWORK( NRWORK ), 1, RWORK( NRWORK ),
  427:      $                      INFO )
  428:                IF( INFO.NE.0 ) THEN
  429:                   RETURN
  430:                END IF
  431: *
  432: *              In the real version, B is passed to DLASDQ and multiplied
  433: *              internally by Q'. Here B is complex and that product is
  434: *              computed below in two steps (real and imaginary parts).
  435: *
  436:                J = IRWB - 1
  437:                DO 190 JCOL = 1, NRHS
  438:                   DO 180 JROW = ST, ST + NSIZE - 1
  439:                      J = J + 1
  440:                      RWORK( J ) = DBLE( B( JROW, JCOL ) )
  441:   180             CONTINUE
  442:   190          CONTINUE
  443:                CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  444:      $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
  445:      $                     ZERO, RWORK( IRWRB ), NSIZE )
  446:                J = IRWB - 1
  447:                DO 210 JCOL = 1, NRHS
  448:                   DO 200 JROW = ST, ST + NSIZE - 1
  449:                      J = J + 1
  450:                      RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  451:   200             CONTINUE
  452:   210          CONTINUE
  453:                CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  454:      $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
  455:      $                     ZERO, RWORK( IRWIB ), NSIZE )
  456:                JREAL = IRWRB - 1
  457:                JIMAG = IRWIB - 1
  458:                DO 230 JCOL = 1, NRHS
  459:                   DO 220 JROW = ST, ST + NSIZE - 1
  460:                      JREAL = JREAL + 1
  461:                      JIMAG = JIMAG + 1
  462:                      B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  463:      $                                 RWORK( JIMAG ) )
  464:   220             CONTINUE
  465:   230          CONTINUE
  466: *
  467:                CALL ZLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
  468:      $                      WORK( BX+ST1 ), N )
  469:             ELSE
  470: *
  471: *              A large problem. Solve it using divide and conquer.
  472: *
  473:                CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
  474:      $                      E( ST ), RWORK( U+ST1 ), N, RWORK( VT+ST1 ),
  475:      $                      IWORK( K+ST1 ), RWORK( DIFL+ST1 ),
  476:      $                      RWORK( DIFR+ST1 ), RWORK( Z+ST1 ),
  477:      $                      RWORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
  478:      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
  479:      $                      RWORK( GIVNUM+ST1 ), RWORK( C+ST1 ),
  480:      $                      RWORK( S+ST1 ), RWORK( NRWORK ),
  481:      $                      IWORK( IWK ), INFO )
  482:                IF( INFO.NE.0 ) THEN
  483:                   RETURN
  484:                END IF
  485:                BXST = BX + ST1
  486:                CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
  487:      $                      LDB, WORK( BXST ), N, RWORK( U+ST1 ), N,
  488:      $                      RWORK( VT+ST1 ), IWORK( K+ST1 ),
  489:      $                      RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
  490:      $                      RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
  491:      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  492:      $                      IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
  493:      $                      RWORK( C+ST1 ), RWORK( S+ST1 ),
  494:      $                      RWORK( NRWORK ), IWORK( IWK ), INFO )
  495:                IF( INFO.NE.0 ) THEN
  496:                   RETURN
  497:                END IF
  498:             END IF
  499:             ST = I + 1
  500:          END IF
  501:   240 CONTINUE
  502: *
  503: *     Apply the singular values and treat the tiny ones as zero.
  504: *
  505:       TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
  506: *
  507:       DO 250 I = 1, N
  508: *
  509: *        Some of the elements in D can be negative because 1-by-1
  510: *        subproblems were not solved explicitly.
  511: *
  512:          IF( ABS( D( I ) ).LE.TOL ) THEN
  513:             CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, WORK( BX+I-1 ), N )
  514:          ELSE
  515:             RANK = RANK + 1
  516:             CALL ZLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
  517:      $                   WORK( BX+I-1 ), N, INFO )
  518:          END IF
  519:          D( I ) = ABS( D( I ) )
  520:   250 CONTINUE
  521: *
  522: *     Now apply back the right singular vectors.
  523: *
  524:       ICMPQ2 = 1
  525:       DO 320 I = 1, NSUB
  526:          ST = IWORK( I )
  527:          ST1 = ST - 1
  528:          NSIZE = IWORK( SIZEI+I-1 )
  529:          BXST = BX + ST1
  530:          IF( NSIZE.EQ.1 ) THEN
  531:             CALL ZCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
  532:          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  533: *
  534: *           Since B and BX are complex, the following call to DGEMM
  535: *           is performed in two steps (real and imaginary parts).
  536: *
  537: *           CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  538: *    $                  RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
  539: *    $                  B( ST, 1 ), LDB )
  540: *
  541:             J = BXST - N - 1
  542:             JREAL = IRWB - 1
  543:             DO 270 JCOL = 1, NRHS
  544:                J = J + N
  545:                DO 260 JROW = 1, NSIZE
  546:                   JREAL = JREAL + 1
  547:                   RWORK( JREAL ) = DBLE( WORK( J+JROW ) )
  548:   260          CONTINUE
  549:   270       CONTINUE
  550:             CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  551:      $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
  552:      $                  RWORK( IRWRB ), NSIZE )
  553:             J = BXST - N - 1
  554:             JIMAG = IRWB - 1
  555:             DO 290 JCOL = 1, NRHS
  556:                J = J + N
  557:                DO 280 JROW = 1, NSIZE
  558:                   JIMAG = JIMAG + 1
  559:                   RWORK( JIMAG ) = DIMAG( WORK( J+JROW ) )
  560:   280          CONTINUE
  561:   290       CONTINUE
  562:             CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  563:      $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
  564:      $                  RWORK( IRWIB ), NSIZE )
  565:             JREAL = IRWRB - 1
  566:             JIMAG = IRWIB - 1
  567:             DO 310 JCOL = 1, NRHS
  568:                DO 300 JROW = ST, ST + NSIZE - 1
  569:                   JREAL = JREAL + 1
  570:                   JIMAG = JIMAG + 1
  571:                   B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  572:      $                              RWORK( JIMAG ) )
  573:   300          CONTINUE
  574:   310       CONTINUE
  575:          ELSE
  576:             CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
  577:      $                   B( ST, 1 ), LDB, RWORK( U+ST1 ), N,
  578:      $                   RWORK( VT+ST1 ), IWORK( K+ST1 ),
  579:      $                   RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
  580:      $                   RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
  581:      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  582:      $                   IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
  583:      $                   RWORK( C+ST1 ), RWORK( S+ST1 ),
  584:      $                   RWORK( NRWORK ), IWORK( IWK ), INFO )
  585:             IF( INFO.NE.0 ) THEN
  586:                RETURN
  587:             END IF
  588:          END IF
  589:   320 CONTINUE
  590: *
  591: *     Unscale and sort the singular values.
  592: *
  593:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  594:       CALL DLASRT( 'D', N, D, INFO )
  595:       CALL ZLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  596: *
  597:       RETURN
  598: *
  599: *     End of ZLALSD
  600: *
  601:       END

CVSweb interface <joel.bertrand@systella.fr>