File:  [local] / rpl / lapack / lapack / zlalsa.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:26 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLALSA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
   22: *                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
   23: *                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
   24: *                          IWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
   28: *      $                   SMLSIZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
   32: *      $                   K( * ), PERM( LDGCOL, * )
   33: *       DOUBLE PRECISION   C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
   34: *      $                   GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
   35: *      $                   S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
   36: *       COMPLEX*16         B( LDB, * ), BX( LDBX, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> ZLALSA is an itermediate step in solving the least squares problem
   46: *> by computing the SVD of the coefficient matrix in compact form (The
   47: *> singular vectors are computed as products of simple orthorgonal
   48: *> matrices.).
   49: *>
   50: *> If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
   51: *> matrix of an upper bidiagonal matrix to the right hand side; and if
   52: *> ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
   53: *> right hand side. The singular vector matrices were generated in
   54: *> compact form by ZLALSA.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] ICOMPQ
   61: *> \verbatim
   62: *>          ICOMPQ is INTEGER
   63: *>         Specifies whether the left or the right singular vector
   64: *>         matrix is involved.
   65: *>         = 0: Left singular vector matrix
   66: *>         = 1: Right singular vector matrix
   67: *> \endverbatim
   68: *>
   69: *> \param[in] SMLSIZ
   70: *> \verbatim
   71: *>          SMLSIZ is INTEGER
   72: *>         The maximum size of the subproblems at the bottom of the
   73: *>         computation tree.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>         The row and column dimensions of the upper bidiagonal matrix.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] NRHS
   83: *> \verbatim
   84: *>          NRHS is INTEGER
   85: *>         The number of columns of B and BX. NRHS must be at least 1.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] B
   89: *> \verbatim
   90: *>          B is COMPLEX*16 array, dimension ( LDB, NRHS )
   91: *>         On input, B contains the right hand sides of the least
   92: *>         squares problem in rows 1 through M.
   93: *>         On output, B contains the solution X in rows 1 through N.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDB
   97: *> \verbatim
   98: *>          LDB is INTEGER
   99: *>         The leading dimension of B in the calling subprogram.
  100: *>         LDB must be at least max(1,MAX( M, N ) ).
  101: *> \endverbatim
  102: *>
  103: *> \param[out] BX
  104: *> \verbatim
  105: *>          BX is COMPLEX*16 array, dimension ( LDBX, NRHS )
  106: *>         On exit, the result of applying the left or right singular
  107: *>         vector matrix to B.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] LDBX
  111: *> \verbatim
  112: *>          LDBX is INTEGER
  113: *>         The leading dimension of BX.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] U
  117: *> \verbatim
  118: *>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
  119: *>         On entry, U contains the left singular vector matrices of all
  120: *>         subproblems at the bottom level.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDU
  124: *> \verbatim
  125: *>          LDU is INTEGER, LDU = > N.
  126: *>         The leading dimension of arrays U, VT, DIFL, DIFR,
  127: *>         POLES, GIVNUM, and Z.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] VT
  131: *> \verbatim
  132: *>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
  133: *>         On entry, VT**H contains the right singular vector matrices of
  134: *>         all subproblems at the bottom level.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] K
  138: *> \verbatim
  139: *>          K is INTEGER array, dimension ( N ).
  140: *> \endverbatim
  141: *>
  142: *> \param[in] DIFL
  143: *> \verbatim
  144: *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
  145: *>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] DIFR
  149: *> \verbatim
  150: *>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
  151: *>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
  152: *>         distances between singular values on the I-th level and
  153: *>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
  154: *>         record the normalizing factors of the right singular vectors
  155: *>         matrices of subproblems on I-th level.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] Z
  159: *> \verbatim
  160: *>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
  161: *>         On entry, Z(1, I) contains the components of the deflation-
  162: *>         adjusted updating row vector for subproblems on the I-th
  163: *>         level.
  164: *> \endverbatim
  165: *>
  166: *> \param[in] POLES
  167: *> \verbatim
  168: *>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
  169: *>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
  170: *>         singular values involved in the secular equations on the I-th
  171: *>         level.
  172: *> \endverbatim
  173: *>
  174: *> \param[in] GIVPTR
  175: *> \verbatim
  176: *>          GIVPTR is INTEGER array, dimension ( N ).
  177: *>         On entry, GIVPTR( I ) records the number of Givens
  178: *>         rotations performed on the I-th problem on the computation
  179: *>         tree.
  180: *> \endverbatim
  181: *>
  182: *> \param[in] GIVCOL
  183: *> \verbatim
  184: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
  185: *>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
  186: *>         locations of Givens rotations performed on the I-th level on
  187: *>         the computation tree.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] LDGCOL
  191: *> \verbatim
  192: *>          LDGCOL is INTEGER, LDGCOL = > N.
  193: *>         The leading dimension of arrays GIVCOL and PERM.
  194: *> \endverbatim
  195: *>
  196: *> \param[in] PERM
  197: *> \verbatim
  198: *>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
  199: *>         On entry, PERM(*, I) records permutations done on the I-th
  200: *>         level of the computation tree.
  201: *> \endverbatim
  202: *>
  203: *> \param[in] GIVNUM
  204: *> \verbatim
  205: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
  206: *>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
  207: *>         values of Givens rotations performed on the I-th level on the
  208: *>         computation tree.
  209: *> \endverbatim
  210: *>
  211: *> \param[in] C
  212: *> \verbatim
  213: *>          C is DOUBLE PRECISION array, dimension ( N ).
  214: *>         On entry, if the I-th subproblem is not square,
  215: *>         C( I ) contains the C-value of a Givens rotation related to
  216: *>         the right null space of the I-th subproblem.
  217: *> \endverbatim
  218: *>
  219: *> \param[in] S
  220: *> \verbatim
  221: *>          S is DOUBLE PRECISION array, dimension ( N ).
  222: *>         On entry, if the I-th subproblem is not square,
  223: *>         S( I ) contains the S-value of a Givens rotation related to
  224: *>         the right null space of the I-th subproblem.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] RWORK
  228: *> \verbatim
  229: *>          RWORK is DOUBLE PRECISION array, dimension at least
  230: *>         MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).
  231: *> \endverbatim
  232: *>
  233: *> \param[out] IWORK
  234: *> \verbatim
  235: *>          IWORK is INTEGER array, dimension (3*N)
  236: *> \endverbatim
  237: *>
  238: *> \param[out] INFO
  239: *> \verbatim
  240: *>          INFO is INTEGER
  241: *>          = 0:  successful exit.
  242: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  243: *> \endverbatim
  244: *
  245: *  Authors:
  246: *  ========
  247: *
  248: *> \author Univ. of Tennessee
  249: *> \author Univ. of California Berkeley
  250: *> \author Univ. of Colorado Denver
  251: *> \author NAG Ltd.
  252: *
  253: *> \date June 2017
  254: *
  255: *> \ingroup complex16OTHERcomputational
  256: *
  257: *> \par Contributors:
  258: *  ==================
  259: *>
  260: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  261: *>       California at Berkeley, USA \n
  262: *>     Osni Marques, LBNL/NERSC, USA \n
  263: *
  264: *  =====================================================================
  265:       SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
  266:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
  267:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
  268:      $                   IWORK, INFO )
  269: *
  270: *  -- LAPACK computational routine (version 3.7.1) --
  271: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  272: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  273: *     June 2017
  274: *
  275: *     .. Scalar Arguments ..
  276:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
  277:      $                   SMLSIZ
  278: *     ..
  279: *     .. Array Arguments ..
  280:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
  281:      $                   K( * ), PERM( LDGCOL, * )
  282:       DOUBLE PRECISION   C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
  283:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
  284:      $                   S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
  285:       COMPLEX*16         B( LDB, * ), BX( LDBX, * )
  286: *     ..
  287: *
  288: *  =====================================================================
  289: *
  290: *     .. Parameters ..
  291:       DOUBLE PRECISION   ZERO, ONE
  292:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  293: *     ..
  294: *     .. Local Scalars ..
  295:       INTEGER            I, I1, IC, IM1, INODE, J, JCOL, JIMAG, JREAL,
  296:      $                   JROW, LF, LL, LVL, LVL2, ND, NDB1, NDIML,
  297:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQRE
  298: *     ..
  299: *     .. External Subroutines ..
  300:       EXTERNAL           DGEMM, DLASDT, XERBLA, ZCOPY, ZLALS0
  301: *     ..
  302: *     .. Intrinsic Functions ..
  303:       INTRINSIC          DBLE, DCMPLX, DIMAG
  304: *     ..
  305: *     .. Executable Statements ..
  306: *
  307: *     Test the input parameters.
  308: *
  309:       INFO = 0
  310: *
  311:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  312:          INFO = -1
  313:       ELSE IF( SMLSIZ.LT.3 ) THEN
  314:          INFO = -2
  315:       ELSE IF( N.LT.SMLSIZ ) THEN
  316:          INFO = -3
  317:       ELSE IF( NRHS.LT.1 ) THEN
  318:          INFO = -4
  319:       ELSE IF( LDB.LT.N ) THEN
  320:          INFO = -6
  321:       ELSE IF( LDBX.LT.N ) THEN
  322:          INFO = -8
  323:       ELSE IF( LDU.LT.N ) THEN
  324:          INFO = -10
  325:       ELSE IF( LDGCOL.LT.N ) THEN
  326:          INFO = -19
  327:       END IF
  328:       IF( INFO.NE.0 ) THEN
  329:          CALL XERBLA( 'ZLALSA', -INFO )
  330:          RETURN
  331:       END IF
  332: *
  333: *     Book-keeping and  setting up the computation tree.
  334: *
  335:       INODE = 1
  336:       NDIML = INODE + N
  337:       NDIMR = NDIML + N
  338: *
  339:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
  340:      $             IWORK( NDIMR ), SMLSIZ )
  341: *
  342: *     The following code applies back the left singular vector factors.
  343: *     For applying back the right singular vector factors, go to 170.
  344: *
  345:       IF( ICOMPQ.EQ.1 ) THEN
  346:          GO TO 170
  347:       END IF
  348: *
  349: *     The nodes on the bottom level of the tree were solved
  350: *     by DLASDQ. The corresponding left and right singular vector
  351: *     matrices are in explicit form. First apply back the left
  352: *     singular vector matrices.
  353: *
  354:       NDB1 = ( ND+1 ) / 2
  355:       DO 130 I = NDB1, ND
  356: *
  357: *        IC : center row of each node
  358: *        NL : number of rows of left  subproblem
  359: *        NR : number of rows of right subproblem
  360: *        NLF: starting row of the left   subproblem
  361: *        NRF: starting row of the right  subproblem
  362: *
  363:          I1 = I - 1
  364:          IC = IWORK( INODE+I1 )
  365:          NL = IWORK( NDIML+I1 )
  366:          NR = IWORK( NDIMR+I1 )
  367:          NLF = IC - NL
  368:          NRF = IC + 1
  369: *
  370: *        Since B and BX are complex, the following call to DGEMM
  371: *        is performed in two steps (real and imaginary parts).
  372: *
  373: *        CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
  374: *     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
  375: *
  376:          J = NL*NRHS*2
  377:          DO 20 JCOL = 1, NRHS
  378:             DO 10 JROW = NLF, NLF + NL - 1
  379:                J = J + 1
  380:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
  381:    10       CONTINUE
  382:    20    CONTINUE
  383:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
  384:      $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1 ), NL )
  385:          J = NL*NRHS*2
  386:          DO 40 JCOL = 1, NRHS
  387:             DO 30 JROW = NLF, NLF + NL - 1
  388:                J = J + 1
  389:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  390:    30       CONTINUE
  391:    40    CONTINUE
  392:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
  393:      $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1+NL*NRHS ),
  394:      $               NL )
  395:          JREAL = 0
  396:          JIMAG = NL*NRHS
  397:          DO 60 JCOL = 1, NRHS
  398:             DO 50 JROW = NLF, NLF + NL - 1
  399:                JREAL = JREAL + 1
  400:                JIMAG = JIMAG + 1
  401:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  402:      $                            RWORK( JIMAG ) )
  403:    50       CONTINUE
  404:    60    CONTINUE
  405: *
  406: *        Since B and BX are complex, the following call to DGEMM
  407: *        is performed in two steps (real and imaginary parts).
  408: *
  409: *        CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
  410: *    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
  411: *
  412:          J = NR*NRHS*2
  413:          DO 80 JCOL = 1, NRHS
  414:             DO 70 JROW = NRF, NRF + NR - 1
  415:                J = J + 1
  416:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
  417:    70       CONTINUE
  418:    80    CONTINUE
  419:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
  420:      $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1 ), NR )
  421:          J = NR*NRHS*2
  422:          DO 100 JCOL = 1, NRHS
  423:             DO 90 JROW = NRF, NRF + NR - 1
  424:                J = J + 1
  425:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  426:    90       CONTINUE
  427:   100    CONTINUE
  428:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
  429:      $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1+NR*NRHS ),
  430:      $               NR )
  431:          JREAL = 0
  432:          JIMAG = NR*NRHS
  433:          DO 120 JCOL = 1, NRHS
  434:             DO 110 JROW = NRF, NRF + NR - 1
  435:                JREAL = JREAL + 1
  436:                JIMAG = JIMAG + 1
  437:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  438:      $                            RWORK( JIMAG ) )
  439:   110       CONTINUE
  440:   120    CONTINUE
  441: *
  442:   130 CONTINUE
  443: *
  444: *     Next copy the rows of B that correspond to unchanged rows
  445: *     in the bidiagonal matrix to BX.
  446: *
  447:       DO 140 I = 1, ND
  448:          IC = IWORK( INODE+I-1 )
  449:          CALL ZCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
  450:   140 CONTINUE
  451: *
  452: *     Finally go through the left singular vector matrices of all
  453: *     the other subproblems bottom-up on the tree.
  454: *
  455:       J = 2**NLVL
  456:       SQRE = 0
  457: *
  458:       DO 160 LVL = NLVL, 1, -1
  459:          LVL2 = 2*LVL - 1
  460: *
  461: *        find the first node LF and last node LL on
  462: *        the current level LVL
  463: *
  464:          IF( LVL.EQ.1 ) THEN
  465:             LF = 1
  466:             LL = 1
  467:          ELSE
  468:             LF = 2**( LVL-1 )
  469:             LL = 2*LF - 1
  470:          END IF
  471:          DO 150 I = LF, LL
  472:             IM1 = I - 1
  473:             IC = IWORK( INODE+IM1 )
  474:             NL = IWORK( NDIML+IM1 )
  475:             NR = IWORK( NDIMR+IM1 )
  476:             NLF = IC - NL
  477:             NRF = IC + 1
  478:             J = J - 1
  479:             CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
  480:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
  481:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
  482:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
  483:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
  484:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
  485:      $                   INFO )
  486:   150    CONTINUE
  487:   160 CONTINUE
  488:       GO TO 330
  489: *
  490: *     ICOMPQ = 1: applying back the right singular vector factors.
  491: *
  492:   170 CONTINUE
  493: *
  494: *     First now go through the right singular vector matrices of all
  495: *     the tree nodes top-down.
  496: *
  497:       J = 0
  498:       DO 190 LVL = 1, NLVL
  499:          LVL2 = 2*LVL - 1
  500: *
  501: *        Find the first node LF and last node LL on
  502: *        the current level LVL.
  503: *
  504:          IF( LVL.EQ.1 ) THEN
  505:             LF = 1
  506:             LL = 1
  507:          ELSE
  508:             LF = 2**( LVL-1 )
  509:             LL = 2*LF - 1
  510:          END IF
  511:          DO 180 I = LL, LF, -1
  512:             IM1 = I - 1
  513:             IC = IWORK( INODE+IM1 )
  514:             NL = IWORK( NDIML+IM1 )
  515:             NR = IWORK( NDIMR+IM1 )
  516:             NLF = IC - NL
  517:             NRF = IC + 1
  518:             IF( I.EQ.LL ) THEN
  519:                SQRE = 0
  520:             ELSE
  521:                SQRE = 1
  522:             END IF
  523:             J = J + 1
  524:             CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
  525:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
  526:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
  527:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
  528:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
  529:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
  530:      $                   INFO )
  531:   180    CONTINUE
  532:   190 CONTINUE
  533: *
  534: *     The nodes on the bottom level of the tree were solved
  535: *     by DLASDQ. The corresponding right singular vector
  536: *     matrices are in explicit form. Apply them back.
  537: *
  538:       NDB1 = ( ND+1 ) / 2
  539:       DO 320 I = NDB1, ND
  540:          I1 = I - 1
  541:          IC = IWORK( INODE+I1 )
  542:          NL = IWORK( NDIML+I1 )
  543:          NR = IWORK( NDIMR+I1 )
  544:          NLP1 = NL + 1
  545:          IF( I.EQ.ND ) THEN
  546:             NRP1 = NR
  547:          ELSE
  548:             NRP1 = NR + 1
  549:          END IF
  550:          NLF = IC - NL
  551:          NRF = IC + 1
  552: *
  553: *        Since B and BX are complex, the following call to DGEMM is
  554: *        performed in two steps (real and imaginary parts).
  555: *
  556: *        CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
  557: *    $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
  558: *
  559:          J = NLP1*NRHS*2
  560:          DO 210 JCOL = 1, NRHS
  561:             DO 200 JROW = NLF, NLF + NLP1 - 1
  562:                J = J + 1
  563:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
  564:   200       CONTINUE
  565:   210    CONTINUE
  566:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
  567:      $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, RWORK( 1 ),
  568:      $               NLP1 )
  569:          J = NLP1*NRHS*2
  570:          DO 230 JCOL = 1, NRHS
  571:             DO 220 JROW = NLF, NLF + NLP1 - 1
  572:                J = J + 1
  573:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  574:   220       CONTINUE
  575:   230    CONTINUE
  576:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
  577:      $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO,
  578:      $               RWORK( 1+NLP1*NRHS ), NLP1 )
  579:          JREAL = 0
  580:          JIMAG = NLP1*NRHS
  581:          DO 250 JCOL = 1, NRHS
  582:             DO 240 JROW = NLF, NLF + NLP1 - 1
  583:                JREAL = JREAL + 1
  584:                JIMAG = JIMAG + 1
  585:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  586:      $                            RWORK( JIMAG ) )
  587:   240       CONTINUE
  588:   250    CONTINUE
  589: *
  590: *        Since B and BX are complex, the following call to DGEMM is
  591: *        performed in two steps (real and imaginary parts).
  592: *
  593: *        CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
  594: *    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
  595: *
  596:          J = NRP1*NRHS*2
  597:          DO 270 JCOL = 1, NRHS
  598:             DO 260 JROW = NRF, NRF + NRP1 - 1
  599:                J = J + 1
  600:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
  601:   260       CONTINUE
  602:   270    CONTINUE
  603:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
  604:      $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, RWORK( 1 ),
  605:      $               NRP1 )
  606:          J = NRP1*NRHS*2
  607:          DO 290 JCOL = 1, NRHS
  608:             DO 280 JROW = NRF, NRF + NRP1 - 1
  609:                J = J + 1
  610:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  611:   280       CONTINUE
  612:   290    CONTINUE
  613:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
  614:      $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO,
  615:      $               RWORK( 1+NRP1*NRHS ), NRP1 )
  616:          JREAL = 0
  617:          JIMAG = NRP1*NRHS
  618:          DO 310 JCOL = 1, NRHS
  619:             DO 300 JROW = NRF, NRF + NRP1 - 1
  620:                JREAL = JREAL + 1
  621:                JIMAG = JIMAG + 1
  622:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
  623:      $                            RWORK( JIMAG ) )
  624:   300       CONTINUE
  625:   310    CONTINUE
  626: *
  627:   320 CONTINUE
  628: *
  629:   330 CONTINUE
  630: *
  631:       RETURN
  632: *
  633: *     End of ZLALSA
  634: *
  635:       END

CVSweb interface <joel.bertrand@systella.fr>