Annotation of rpl/lapack/lapack/zlalsa.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
                      2:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
                      3:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
                      4:      $                   IWORK, INFO )
                      5: *
                      6: *  -- LAPACK routine (version 3.2) --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *     November 2006
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
                     13:      $                   SMLSIZ
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                     17:      $                   K( * ), PERM( LDGCOL, * )
                     18:       DOUBLE PRECISION   C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
                     19:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
                     20:      $                   S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
                     21:       COMPLEX*16         B( LDB, * ), BX( LDBX, * )
                     22: *     ..
                     23: *
                     24: *  Purpose
                     25: *  =======
                     26: *
                     27: *  ZLALSA is an itermediate step in solving the least squares problem
                     28: *  by computing the SVD of the coefficient matrix in compact form (The
                     29: *  singular vectors are computed as products of simple orthorgonal
                     30: *  matrices.).
                     31: *
                     32: *  If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
                     33: *  matrix of an upper bidiagonal matrix to the right hand side; and if
                     34: *  ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
                     35: *  right hand side. The singular vector matrices were generated in
                     36: *  compact form by ZLALSA.
                     37: *
                     38: *  Arguments
                     39: *  =========
                     40: *
                     41: *  ICOMPQ (input) INTEGER
                     42: *         Specifies whether the left or the right singular vector
                     43: *         matrix is involved.
                     44: *         = 0: Left singular vector matrix
                     45: *         = 1: Right singular vector matrix
                     46: *
                     47: *  SMLSIZ (input) INTEGER
                     48: *         The maximum size of the subproblems at the bottom of the
                     49: *         computation tree.
                     50: *
                     51: *  N      (input) INTEGER
                     52: *         The row and column dimensions of the upper bidiagonal matrix.
                     53: *
                     54: *  NRHS   (input) INTEGER
                     55: *         The number of columns of B and BX. NRHS must be at least 1.
                     56: *
                     57: *  B      (input/output) COMPLEX*16 array, dimension ( LDB, NRHS )
                     58: *         On input, B contains the right hand sides of the least
                     59: *         squares problem in rows 1 through M.
                     60: *         On output, B contains the solution X in rows 1 through N.
                     61: *
                     62: *  LDB    (input) INTEGER
                     63: *         The leading dimension of B in the calling subprogram.
                     64: *         LDB must be at least max(1,MAX( M, N ) ).
                     65: *
                     66: *  BX     (output) COMPLEX*16 array, dimension ( LDBX, NRHS )
                     67: *         On exit, the result of applying the left or right singular
                     68: *         vector matrix to B.
                     69: *
                     70: *  LDBX   (input) INTEGER
                     71: *         The leading dimension of BX.
                     72: *
                     73: *  U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
                     74: *         On entry, U contains the left singular vector matrices of all
                     75: *         subproblems at the bottom level.
                     76: *
                     77: *  LDU    (input) INTEGER, LDU = > N.
                     78: *         The leading dimension of arrays U, VT, DIFL, DIFR,
                     79: *         POLES, GIVNUM, and Z.
                     80: *
                     81: *  VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
                     82: *         On entry, VT' contains the right singular vector matrices of
                     83: *         all subproblems at the bottom level.
                     84: *
                     85: *  K      (input) INTEGER array, dimension ( N ).
                     86: *
                     87: *  DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                     88: *         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
                     89: *
                     90: *  DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                     91: *         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
                     92: *         distances between singular values on the I-th level and
                     93: *         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
                     94: *         record the normalizing factors of the right singular vectors
                     95: *         matrices of subproblems on I-th level.
                     96: *
                     97: *  Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                     98: *         On entry, Z(1, I) contains the components of the deflation-
                     99: *         adjusted updating row vector for subproblems on the I-th
                    100: *         level.
                    101: *
                    102: *  POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    103: *         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
                    104: *         singular values involved in the secular equations on the I-th
                    105: *         level.
                    106: *
                    107: *  GIVPTR (input) INTEGER array, dimension ( N ).
                    108: *         On entry, GIVPTR( I ) records the number of Givens
                    109: *         rotations performed on the I-th problem on the computation
                    110: *         tree.
                    111: *
                    112: *  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
                    113: *         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
                    114: *         locations of Givens rotations performed on the I-th level on
                    115: *         the computation tree.
                    116: *
                    117: *  LDGCOL (input) INTEGER, LDGCOL = > N.
                    118: *         The leading dimension of arrays GIVCOL and PERM.
                    119: *
                    120: *  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).
                    121: *         On entry, PERM(*, I) records permutations done on the I-th
                    122: *         level of the computation tree.
                    123: *
                    124: *  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    125: *         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
                    126: *         values of Givens rotations performed on the I-th level on the
                    127: *         computation tree.
                    128: *
                    129: *  C      (input) DOUBLE PRECISION array, dimension ( N ).
                    130: *         On entry, if the I-th subproblem is not square,
                    131: *         C( I ) contains the C-value of a Givens rotation related to
                    132: *         the right null space of the I-th subproblem.
                    133: *
                    134: *  S      (input) DOUBLE PRECISION array, dimension ( N ).
                    135: *         On entry, if the I-th subproblem is not square,
                    136: *         S( I ) contains the S-value of a Givens rotation related to
                    137: *         the right null space of the I-th subproblem.
                    138: *
                    139: *  RWORK  (workspace) DOUBLE PRECISION array, dimension at least
1.5       bertrand  140: *         MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).
1.1       bertrand  141: *
                    142: *  IWORK  (workspace) INTEGER array.
                    143: *         The dimension must be at least 3 * N
                    144: *
                    145: *  INFO   (output) INTEGER
                    146: *          = 0:  successful exit.
                    147: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    148: *
                    149: *  Further Details
                    150: *  ===============
                    151: *
                    152: *  Based on contributions by
                    153: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    154: *       California at Berkeley, USA
                    155: *     Osni Marques, LBNL/NERSC, USA
                    156: *
                    157: *  =====================================================================
                    158: *
                    159: *     .. Parameters ..
                    160:       DOUBLE PRECISION   ZERO, ONE
                    161:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    162: *     ..
                    163: *     .. Local Scalars ..
                    164:       INTEGER            I, I1, IC, IM1, INODE, J, JCOL, JIMAG, JREAL,
                    165:      $                   JROW, LF, LL, LVL, LVL2, ND, NDB1, NDIML,
                    166:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQRE
                    167: *     ..
                    168: *     .. External Subroutines ..
                    169:       EXTERNAL           DGEMM, DLASDT, XERBLA, ZCOPY, ZLALS0
                    170: *     ..
                    171: *     .. Intrinsic Functions ..
                    172:       INTRINSIC          DBLE, DCMPLX, DIMAG
                    173: *     ..
                    174: *     .. Executable Statements ..
                    175: *
                    176: *     Test the input parameters.
                    177: *
                    178:       INFO = 0
                    179: *
                    180:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    181:          INFO = -1
                    182:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    183:          INFO = -2
                    184:       ELSE IF( N.LT.SMLSIZ ) THEN
                    185:          INFO = -3
                    186:       ELSE IF( NRHS.LT.1 ) THEN
                    187:          INFO = -4
                    188:       ELSE IF( LDB.LT.N ) THEN
                    189:          INFO = -6
                    190:       ELSE IF( LDBX.LT.N ) THEN
                    191:          INFO = -8
                    192:       ELSE IF( LDU.LT.N ) THEN
                    193:          INFO = -10
                    194:       ELSE IF( LDGCOL.LT.N ) THEN
                    195:          INFO = -19
                    196:       END IF
                    197:       IF( INFO.NE.0 ) THEN
                    198:          CALL XERBLA( 'ZLALSA', -INFO )
                    199:          RETURN
                    200:       END IF
                    201: *
                    202: *     Book-keeping and  setting up the computation tree.
                    203: *
                    204:       INODE = 1
                    205:       NDIML = INODE + N
                    206:       NDIMR = NDIML + N
                    207: *
                    208:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    209:      $             IWORK( NDIMR ), SMLSIZ )
                    210: *
                    211: *     The following code applies back the left singular vector factors.
                    212: *     For applying back the right singular vector factors, go to 170.
                    213: *
                    214:       IF( ICOMPQ.EQ.1 ) THEN
                    215:          GO TO 170
                    216:       END IF
                    217: *
                    218: *     The nodes on the bottom level of the tree were solved
                    219: *     by DLASDQ. The corresponding left and right singular vector
                    220: *     matrices are in explicit form. First apply back the left
                    221: *     singular vector matrices.
                    222: *
                    223:       NDB1 = ( ND+1 ) / 2
                    224:       DO 130 I = NDB1, ND
                    225: *
                    226: *        IC : center row of each node
                    227: *        NL : number of rows of left  subproblem
                    228: *        NR : number of rows of right subproblem
                    229: *        NLF: starting row of the left   subproblem
                    230: *        NRF: starting row of the right  subproblem
                    231: *
                    232:          I1 = I - 1
                    233:          IC = IWORK( INODE+I1 )
                    234:          NL = IWORK( NDIML+I1 )
                    235:          NR = IWORK( NDIMR+I1 )
                    236:          NLF = IC - NL
                    237:          NRF = IC + 1
                    238: *
                    239: *        Since B and BX are complex, the following call to DGEMM
                    240: *        is performed in two steps (real and imaginary parts).
                    241: *
                    242: *        CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    243: *     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    244: *
                    245:          J = NL*NRHS*2
                    246:          DO 20 JCOL = 1, NRHS
                    247:             DO 10 JROW = NLF, NLF + NL - 1
                    248:                J = J + 1
                    249:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    250:    10       CONTINUE
                    251:    20    CONTINUE
                    252:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    253:      $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1 ), NL )
                    254:          J = NL*NRHS*2
                    255:          DO 40 JCOL = 1, NRHS
                    256:             DO 30 JROW = NLF, NLF + NL - 1
                    257:                J = J + 1
                    258:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    259:    30       CONTINUE
                    260:    40    CONTINUE
                    261:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    262:      $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1+NL*NRHS ),
                    263:      $               NL )
                    264:          JREAL = 0
                    265:          JIMAG = NL*NRHS
                    266:          DO 60 JCOL = 1, NRHS
                    267:             DO 50 JROW = NLF, NLF + NL - 1
                    268:                JREAL = JREAL + 1
                    269:                JIMAG = JIMAG + 1
                    270:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    271:      $                            RWORK( JIMAG ) )
                    272:    50       CONTINUE
                    273:    60    CONTINUE
                    274: *
                    275: *        Since B and BX are complex, the following call to DGEMM
                    276: *        is performed in two steps (real and imaginary parts).
                    277: *
                    278: *        CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    279: *    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    280: *
                    281:          J = NR*NRHS*2
                    282:          DO 80 JCOL = 1, NRHS
                    283:             DO 70 JROW = NRF, NRF + NR - 1
                    284:                J = J + 1
                    285:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    286:    70       CONTINUE
                    287:    80    CONTINUE
                    288:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    289:      $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1 ), NR )
                    290:          J = NR*NRHS*2
                    291:          DO 100 JCOL = 1, NRHS
                    292:             DO 90 JROW = NRF, NRF + NR - 1
                    293:                J = J + 1
                    294:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    295:    90       CONTINUE
                    296:   100    CONTINUE
                    297:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    298:      $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1+NR*NRHS ),
                    299:      $               NR )
                    300:          JREAL = 0
                    301:          JIMAG = NR*NRHS
                    302:          DO 120 JCOL = 1, NRHS
                    303:             DO 110 JROW = NRF, NRF + NR - 1
                    304:                JREAL = JREAL + 1
                    305:                JIMAG = JIMAG + 1
                    306:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    307:      $                            RWORK( JIMAG ) )
                    308:   110       CONTINUE
                    309:   120    CONTINUE
                    310: *
                    311:   130 CONTINUE
                    312: *
                    313: *     Next copy the rows of B that correspond to unchanged rows
                    314: *     in the bidiagonal matrix to BX.
                    315: *
                    316:       DO 140 I = 1, ND
                    317:          IC = IWORK( INODE+I-1 )
                    318:          CALL ZCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
                    319:   140 CONTINUE
                    320: *
                    321: *     Finally go through the left singular vector matrices of all
                    322: *     the other subproblems bottom-up on the tree.
                    323: *
                    324:       J = 2**NLVL
                    325:       SQRE = 0
                    326: *
                    327:       DO 160 LVL = NLVL, 1, -1
                    328:          LVL2 = 2*LVL - 1
                    329: *
                    330: *        find the first node LF and last node LL on
                    331: *        the current level LVL
                    332: *
                    333:          IF( LVL.EQ.1 ) THEN
                    334:             LF = 1
                    335:             LL = 1
                    336:          ELSE
                    337:             LF = 2**( LVL-1 )
                    338:             LL = 2*LF - 1
                    339:          END IF
                    340:          DO 150 I = LF, LL
                    341:             IM1 = I - 1
                    342:             IC = IWORK( INODE+IM1 )
                    343:             NL = IWORK( NDIML+IM1 )
                    344:             NR = IWORK( NDIMR+IM1 )
                    345:             NLF = IC - NL
                    346:             NRF = IC + 1
                    347:             J = J - 1
                    348:             CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
                    349:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
                    350:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    351:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    352:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    353:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
                    354:      $                   INFO )
                    355:   150    CONTINUE
                    356:   160 CONTINUE
                    357:       GO TO 330
                    358: *
                    359: *     ICOMPQ = 1: applying back the right singular vector factors.
                    360: *
                    361:   170 CONTINUE
                    362: *
                    363: *     First now go through the right singular vector matrices of all
                    364: *     the tree nodes top-down.
                    365: *
                    366:       J = 0
                    367:       DO 190 LVL = 1, NLVL
                    368:          LVL2 = 2*LVL - 1
                    369: *
                    370: *        Find the first node LF and last node LL on
                    371: *        the current level LVL.
                    372: *
                    373:          IF( LVL.EQ.1 ) THEN
                    374:             LF = 1
                    375:             LL = 1
                    376:          ELSE
                    377:             LF = 2**( LVL-1 )
                    378:             LL = 2*LF - 1
                    379:          END IF
                    380:          DO 180 I = LL, LF, -1
                    381:             IM1 = I - 1
                    382:             IC = IWORK( INODE+IM1 )
                    383:             NL = IWORK( NDIML+IM1 )
                    384:             NR = IWORK( NDIMR+IM1 )
                    385:             NLF = IC - NL
                    386:             NRF = IC + 1
                    387:             IF( I.EQ.LL ) THEN
                    388:                SQRE = 0
                    389:             ELSE
                    390:                SQRE = 1
                    391:             END IF
                    392:             J = J + 1
                    393:             CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
                    394:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
                    395:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    396:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    397:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    398:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
                    399:      $                   INFO )
                    400:   180    CONTINUE
                    401:   190 CONTINUE
                    402: *
                    403: *     The nodes on the bottom level of the tree were solved
                    404: *     by DLASDQ. The corresponding right singular vector
                    405: *     matrices are in explicit form. Apply them back.
                    406: *
                    407:       NDB1 = ( ND+1 ) / 2
                    408:       DO 320 I = NDB1, ND
                    409:          I1 = I - 1
                    410:          IC = IWORK( INODE+I1 )
                    411:          NL = IWORK( NDIML+I1 )
                    412:          NR = IWORK( NDIMR+I1 )
                    413:          NLP1 = NL + 1
                    414:          IF( I.EQ.ND ) THEN
                    415:             NRP1 = NR
                    416:          ELSE
                    417:             NRP1 = NR + 1
                    418:          END IF
                    419:          NLF = IC - NL
                    420:          NRF = IC + 1
                    421: *
                    422: *        Since B and BX are complex, the following call to DGEMM is
                    423: *        performed in two steps (real and imaginary parts).
                    424: *
                    425: *        CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    426: *    $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    427: *
                    428:          J = NLP1*NRHS*2
                    429:          DO 210 JCOL = 1, NRHS
                    430:             DO 200 JROW = NLF, NLF + NLP1 - 1
                    431:                J = J + 1
                    432:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    433:   200       CONTINUE
                    434:   210    CONTINUE
                    435:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    436:      $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, RWORK( 1 ),
                    437:      $               NLP1 )
                    438:          J = NLP1*NRHS*2
                    439:          DO 230 JCOL = 1, NRHS
                    440:             DO 220 JROW = NLF, NLF + NLP1 - 1
                    441:                J = J + 1
                    442:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    443:   220       CONTINUE
                    444:   230    CONTINUE
                    445:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    446:      $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO,
                    447:      $               RWORK( 1+NLP1*NRHS ), NLP1 )
                    448:          JREAL = 0
                    449:          JIMAG = NLP1*NRHS
                    450:          DO 250 JCOL = 1, NRHS
                    451:             DO 240 JROW = NLF, NLF + NLP1 - 1
                    452:                JREAL = JREAL + 1
                    453:                JIMAG = JIMAG + 1
                    454:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    455:      $                            RWORK( JIMAG ) )
                    456:   240       CONTINUE
                    457:   250    CONTINUE
                    458: *
                    459: *        Since B and BX are complex, the following call to DGEMM is
                    460: *        performed in two steps (real and imaginary parts).
                    461: *
                    462: *        CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    463: *    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    464: *
                    465:          J = NRP1*NRHS*2
                    466:          DO 270 JCOL = 1, NRHS
                    467:             DO 260 JROW = NRF, NRF + NRP1 - 1
                    468:                J = J + 1
                    469:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    470:   260       CONTINUE
                    471:   270    CONTINUE
                    472:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    473:      $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, RWORK( 1 ),
                    474:      $               NRP1 )
                    475:          J = NRP1*NRHS*2
                    476:          DO 290 JCOL = 1, NRHS
                    477:             DO 280 JROW = NRF, NRF + NRP1 - 1
                    478:                J = J + 1
                    479:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    480:   280       CONTINUE
                    481:   290    CONTINUE
                    482:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    483:      $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO,
                    484:      $               RWORK( 1+NRP1*NRHS ), NRP1 )
                    485:          JREAL = 0
                    486:          JIMAG = NRP1*NRHS
                    487:          DO 310 JCOL = 1, NRHS
                    488:             DO 300 JROW = NRF, NRF + NRP1 - 1
                    489:                JREAL = JREAL + 1
                    490:                JIMAG = JIMAG + 1
                    491:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    492:      $                            RWORK( JIMAG ) )
                    493:   300       CONTINUE
                    494:   310    CONTINUE
                    495: *
                    496:   320 CONTINUE
                    497: *
                    498:   330 CONTINUE
                    499: *
                    500:       RETURN
                    501: *
                    502: *     End of ZLALSA
                    503: *
                    504:       END

CVSweb interface <joel.bertrand@systella.fr>