Annotation of rpl/lapack/lapack/zlalsa.f, revision 1.16

1.13      bertrand    1: *> \brief \b ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLALSA + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsa.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsa.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsa.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
                     22: *                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
                     23: *                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
                     24: *                          IWORK, INFO )
                     25: * 
                     26: *       .. Scalar Arguments ..
                     27: *       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
                     28: *      $                   SMLSIZ
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                     32: *      $                   K( * ), PERM( LDGCOL, * )
                     33: *       DOUBLE PRECISION   C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
                     34: *      $                   GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
                     35: *      $                   S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
                     36: *       COMPLEX*16         B( LDB, * ), BX( LDBX, * )
                     37: *       ..
                     38: *  
                     39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> ZLALSA is an itermediate step in solving the least squares problem
                     46: *> by computing the SVD of the coefficient matrix in compact form (The
                     47: *> singular vectors are computed as products of simple orthorgonal
                     48: *> matrices.).
                     49: *>
                     50: *> If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
                     51: *> matrix of an upper bidiagonal matrix to the right hand side; and if
                     52: *> ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
                     53: *> right hand side. The singular vector matrices were generated in
                     54: *> compact form by ZLALSA.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] ICOMPQ
                     61: *> \verbatim
                     62: *>          ICOMPQ is INTEGER
                     63: *>         Specifies whether the left or the right singular vector
                     64: *>         matrix is involved.
                     65: *>         = 0: Left singular vector matrix
                     66: *>         = 1: Right singular vector matrix
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] SMLSIZ
                     70: *> \verbatim
                     71: *>          SMLSIZ is INTEGER
                     72: *>         The maximum size of the subproblems at the bottom of the
                     73: *>         computation tree.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>         The row and column dimensions of the upper bidiagonal matrix.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] NRHS
                     83: *> \verbatim
                     84: *>          NRHS is INTEGER
                     85: *>         The number of columns of B and BX. NRHS must be at least 1.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is COMPLEX*16 array, dimension ( LDB, NRHS )
                     91: *>         On input, B contains the right hand sides of the least
                     92: *>         squares problem in rows 1 through M.
                     93: *>         On output, B contains the solution X in rows 1 through N.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDB
                     97: *> \verbatim
                     98: *>          LDB is INTEGER
                     99: *>         The leading dimension of B in the calling subprogram.
                    100: *>         LDB must be at least max(1,MAX( M, N ) ).
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[out] BX
                    104: *> \verbatim
                    105: *>          BX is COMPLEX*16 array, dimension ( LDBX, NRHS )
                    106: *>         On exit, the result of applying the left or right singular
                    107: *>         vector matrix to B.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] LDBX
                    111: *> \verbatim
                    112: *>          LDBX is INTEGER
                    113: *>         The leading dimension of BX.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] U
                    117: *> \verbatim
                    118: *>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
                    119: *>         On entry, U contains the left singular vector matrices of all
                    120: *>         subproblems at the bottom level.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] LDU
                    124: *> \verbatim
                    125: *>          LDU is INTEGER, LDU = > N.
                    126: *>         The leading dimension of arrays U, VT, DIFL, DIFR,
                    127: *>         POLES, GIVNUM, and Z.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] VT
                    131: *> \verbatim
                    132: *>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
                    133: *>         On entry, VT**H contains the right singular vector matrices of
                    134: *>         all subproblems at the bottom level.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] K
                    138: *> \verbatim
                    139: *>          K is INTEGER array, dimension ( N ).
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] DIFL
                    143: *> \verbatim
                    144: *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                    145: *>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] DIFR
                    149: *> \verbatim
                    150: *>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    151: *>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
                    152: *>         distances between singular values on the I-th level and
                    153: *>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
                    154: *>         record the normalizing factors of the right singular vectors
                    155: *>         matrices of subproblems on I-th level.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] Z
                    159: *> \verbatim
                    160: *>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
                    161: *>         On entry, Z(1, I) contains the components of the deflation-
                    162: *>         adjusted updating row vector for subproblems on the I-th
                    163: *>         level.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in] POLES
                    167: *> \verbatim
                    168: *>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    169: *>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
                    170: *>         singular values involved in the secular equations on the I-th
                    171: *>         level.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[in] GIVPTR
                    175: *> \verbatim
                    176: *>          GIVPTR is INTEGER array, dimension ( N ).
                    177: *>         On entry, GIVPTR( I ) records the number of Givens
                    178: *>         rotations performed on the I-th problem on the computation
                    179: *>         tree.
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[in] GIVCOL
                    183: *> \verbatim
                    184: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
                    185: *>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
                    186: *>         locations of Givens rotations performed on the I-th level on
                    187: *>         the computation tree.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] LDGCOL
                    191: *> \verbatim
                    192: *>          LDGCOL is INTEGER, LDGCOL = > N.
                    193: *>         The leading dimension of arrays GIVCOL and PERM.
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[in] PERM
                    197: *> \verbatim
                    198: *>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
                    199: *>         On entry, PERM(*, I) records permutations done on the I-th
                    200: *>         level of the computation tree.
                    201: *> \endverbatim
                    202: *>
                    203: *> \param[in] GIVNUM
                    204: *> \verbatim
                    205: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
                    206: *>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
                    207: *>         values of Givens rotations performed on the I-th level on the
                    208: *>         computation tree.
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[in] C
                    212: *> \verbatim
                    213: *>          C is DOUBLE PRECISION array, dimension ( N ).
                    214: *>         On entry, if the I-th subproblem is not square,
                    215: *>         C( I ) contains the C-value of a Givens rotation related to
                    216: *>         the right null space of the I-th subproblem.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[in] S
                    220: *> \verbatim
                    221: *>          S is DOUBLE PRECISION array, dimension ( N ).
                    222: *>         On entry, if the I-th subproblem is not square,
                    223: *>         S( I ) contains the S-value of a Givens rotation related to
                    224: *>         the right null space of the I-th subproblem.
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[out] RWORK
                    228: *> \verbatim
                    229: *>          RWORK is DOUBLE PRECISION array, dimension at least
                    230: *>         MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[out] IWORK
                    234: *> \verbatim
                    235: *>          IWORK is INTEGER array.
                    236: *>         The dimension must be at least 3 * N
                    237: *> \endverbatim
                    238: *>
                    239: *> \param[out] INFO
                    240: *> \verbatim
                    241: *>          INFO is INTEGER
                    242: *>          = 0:  successful exit.
                    243: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    244: *> \endverbatim
                    245: *
                    246: *  Authors:
                    247: *  ========
                    248: *
                    249: *> \author Univ. of Tennessee 
                    250: *> \author Univ. of California Berkeley 
                    251: *> \author Univ. of Colorado Denver 
                    252: *> \author NAG Ltd. 
                    253: *
1.13      bertrand  254: *> \date September 2012
1.10      bertrand  255: *
                    256: *> \ingroup complex16OTHERcomputational
                    257: *
                    258: *> \par Contributors:
                    259: *  ==================
                    260: *>
                    261: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    262: *>       California at Berkeley, USA \n
                    263: *>     Osni Marques, LBNL/NERSC, USA \n
                    264: *
                    265: *  =====================================================================
1.1       bertrand  266:       SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
                    267:      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
                    268:      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
                    269:      $                   IWORK, INFO )
                    270: *
1.13      bertrand  271: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  272: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    273: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13      bertrand  274: *     September 2012
1.1       bertrand  275: *
                    276: *     .. Scalar Arguments ..
                    277:       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
                    278:      $                   SMLSIZ
                    279: *     ..
                    280: *     .. Array Arguments ..
                    281:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                    282:      $                   K( * ), PERM( LDGCOL, * )
                    283:       DOUBLE PRECISION   C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
                    284:      $                   GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
                    285:      $                   S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
                    286:       COMPLEX*16         B( LDB, * ), BX( LDBX, * )
                    287: *     ..
                    288: *
                    289: *  =====================================================================
                    290: *
                    291: *     .. Parameters ..
                    292:       DOUBLE PRECISION   ZERO, ONE
                    293:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    294: *     ..
                    295: *     .. Local Scalars ..
                    296:       INTEGER            I, I1, IC, IM1, INODE, J, JCOL, JIMAG, JREAL,
                    297:      $                   JROW, LF, LL, LVL, LVL2, ND, NDB1, NDIML,
                    298:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQRE
                    299: *     ..
                    300: *     .. External Subroutines ..
                    301:       EXTERNAL           DGEMM, DLASDT, XERBLA, ZCOPY, ZLALS0
                    302: *     ..
                    303: *     .. Intrinsic Functions ..
                    304:       INTRINSIC          DBLE, DCMPLX, DIMAG
                    305: *     ..
                    306: *     .. Executable Statements ..
                    307: *
                    308: *     Test the input parameters.
                    309: *
                    310:       INFO = 0
                    311: *
                    312:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    313:          INFO = -1
                    314:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    315:          INFO = -2
                    316:       ELSE IF( N.LT.SMLSIZ ) THEN
                    317:          INFO = -3
                    318:       ELSE IF( NRHS.LT.1 ) THEN
                    319:          INFO = -4
                    320:       ELSE IF( LDB.LT.N ) THEN
                    321:          INFO = -6
                    322:       ELSE IF( LDBX.LT.N ) THEN
                    323:          INFO = -8
                    324:       ELSE IF( LDU.LT.N ) THEN
                    325:          INFO = -10
                    326:       ELSE IF( LDGCOL.LT.N ) THEN
                    327:          INFO = -19
                    328:       END IF
                    329:       IF( INFO.NE.0 ) THEN
                    330:          CALL XERBLA( 'ZLALSA', -INFO )
                    331:          RETURN
                    332:       END IF
                    333: *
                    334: *     Book-keeping and  setting up the computation tree.
                    335: *
                    336:       INODE = 1
                    337:       NDIML = INODE + N
                    338:       NDIMR = NDIML + N
                    339: *
                    340:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    341:      $             IWORK( NDIMR ), SMLSIZ )
                    342: *
                    343: *     The following code applies back the left singular vector factors.
                    344: *     For applying back the right singular vector factors, go to 170.
                    345: *
                    346:       IF( ICOMPQ.EQ.1 ) THEN
                    347:          GO TO 170
                    348:       END IF
                    349: *
                    350: *     The nodes on the bottom level of the tree were solved
                    351: *     by DLASDQ. The corresponding left and right singular vector
                    352: *     matrices are in explicit form. First apply back the left
                    353: *     singular vector matrices.
                    354: *
                    355:       NDB1 = ( ND+1 ) / 2
                    356:       DO 130 I = NDB1, ND
                    357: *
                    358: *        IC : center row of each node
                    359: *        NL : number of rows of left  subproblem
                    360: *        NR : number of rows of right subproblem
                    361: *        NLF: starting row of the left   subproblem
                    362: *        NRF: starting row of the right  subproblem
                    363: *
                    364:          I1 = I - 1
                    365:          IC = IWORK( INODE+I1 )
                    366:          NL = IWORK( NDIML+I1 )
                    367:          NR = IWORK( NDIMR+I1 )
                    368:          NLF = IC - NL
                    369:          NRF = IC + 1
                    370: *
                    371: *        Since B and BX are complex, the following call to DGEMM
                    372: *        is performed in two steps (real and imaginary parts).
                    373: *
                    374: *        CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    375: *     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    376: *
                    377:          J = NL*NRHS*2
                    378:          DO 20 JCOL = 1, NRHS
                    379:             DO 10 JROW = NLF, NLF + NL - 1
                    380:                J = J + 1
                    381:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    382:    10       CONTINUE
                    383:    20    CONTINUE
                    384:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    385:      $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1 ), NL )
                    386:          J = NL*NRHS*2
                    387:          DO 40 JCOL = 1, NRHS
                    388:             DO 30 JROW = NLF, NLF + NL - 1
                    389:                J = J + 1
                    390:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    391:    30       CONTINUE
                    392:    40    CONTINUE
                    393:          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
                    394:      $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1+NL*NRHS ),
                    395:      $               NL )
                    396:          JREAL = 0
                    397:          JIMAG = NL*NRHS
                    398:          DO 60 JCOL = 1, NRHS
                    399:             DO 50 JROW = NLF, NLF + NL - 1
                    400:                JREAL = JREAL + 1
                    401:                JIMAG = JIMAG + 1
                    402:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    403:      $                            RWORK( JIMAG ) )
                    404:    50       CONTINUE
                    405:    60    CONTINUE
                    406: *
                    407: *        Since B and BX are complex, the following call to DGEMM
                    408: *        is performed in two steps (real and imaginary parts).
                    409: *
                    410: *        CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    411: *    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    412: *
                    413:          J = NR*NRHS*2
                    414:          DO 80 JCOL = 1, NRHS
                    415:             DO 70 JROW = NRF, NRF + NR - 1
                    416:                J = J + 1
                    417:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    418:    70       CONTINUE
                    419:    80    CONTINUE
                    420:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    421:      $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1 ), NR )
                    422:          J = NR*NRHS*2
                    423:          DO 100 JCOL = 1, NRHS
                    424:             DO 90 JROW = NRF, NRF + NR - 1
                    425:                J = J + 1
                    426:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    427:    90       CONTINUE
                    428:   100    CONTINUE
                    429:          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
                    430:      $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1+NR*NRHS ),
                    431:      $               NR )
                    432:          JREAL = 0
                    433:          JIMAG = NR*NRHS
                    434:          DO 120 JCOL = 1, NRHS
                    435:             DO 110 JROW = NRF, NRF + NR - 1
                    436:                JREAL = JREAL + 1
                    437:                JIMAG = JIMAG + 1
                    438:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    439:      $                            RWORK( JIMAG ) )
                    440:   110       CONTINUE
                    441:   120    CONTINUE
                    442: *
                    443:   130 CONTINUE
                    444: *
                    445: *     Next copy the rows of B that correspond to unchanged rows
                    446: *     in the bidiagonal matrix to BX.
                    447: *
                    448:       DO 140 I = 1, ND
                    449:          IC = IWORK( INODE+I-1 )
                    450:          CALL ZCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
                    451:   140 CONTINUE
                    452: *
                    453: *     Finally go through the left singular vector matrices of all
                    454: *     the other subproblems bottom-up on the tree.
                    455: *
                    456:       J = 2**NLVL
                    457:       SQRE = 0
                    458: *
                    459:       DO 160 LVL = NLVL, 1, -1
                    460:          LVL2 = 2*LVL - 1
                    461: *
                    462: *        find the first node LF and last node LL on
                    463: *        the current level LVL
                    464: *
                    465:          IF( LVL.EQ.1 ) THEN
                    466:             LF = 1
                    467:             LL = 1
                    468:          ELSE
                    469:             LF = 2**( LVL-1 )
                    470:             LL = 2*LF - 1
                    471:          END IF
                    472:          DO 150 I = LF, LL
                    473:             IM1 = I - 1
                    474:             IC = IWORK( INODE+IM1 )
                    475:             NL = IWORK( NDIML+IM1 )
                    476:             NR = IWORK( NDIMR+IM1 )
                    477:             NLF = IC - NL
                    478:             NRF = IC + 1
                    479:             J = J - 1
                    480:             CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
                    481:      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
                    482:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    483:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    484:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    485:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
                    486:      $                   INFO )
                    487:   150    CONTINUE
                    488:   160 CONTINUE
                    489:       GO TO 330
                    490: *
                    491: *     ICOMPQ = 1: applying back the right singular vector factors.
                    492: *
                    493:   170 CONTINUE
                    494: *
                    495: *     First now go through the right singular vector matrices of all
                    496: *     the tree nodes top-down.
                    497: *
                    498:       J = 0
                    499:       DO 190 LVL = 1, NLVL
                    500:          LVL2 = 2*LVL - 1
                    501: *
                    502: *        Find the first node LF and last node LL on
                    503: *        the current level LVL.
                    504: *
                    505:          IF( LVL.EQ.1 ) THEN
                    506:             LF = 1
                    507:             LL = 1
                    508:          ELSE
                    509:             LF = 2**( LVL-1 )
                    510:             LL = 2*LF - 1
                    511:          END IF
                    512:          DO 180 I = LL, LF, -1
                    513:             IM1 = I - 1
                    514:             IC = IWORK( INODE+IM1 )
                    515:             NL = IWORK( NDIML+IM1 )
                    516:             NR = IWORK( NDIMR+IM1 )
                    517:             NLF = IC - NL
                    518:             NRF = IC + 1
                    519:             IF( I.EQ.LL ) THEN
                    520:                SQRE = 0
                    521:             ELSE
                    522:                SQRE = 1
                    523:             END IF
                    524:             J = J + 1
                    525:             CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
                    526:      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
                    527:      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    528:      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
                    529:      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
                    530:      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
                    531:      $                   INFO )
                    532:   180    CONTINUE
                    533:   190 CONTINUE
                    534: *
                    535: *     The nodes on the bottom level of the tree were solved
                    536: *     by DLASDQ. The corresponding right singular vector
                    537: *     matrices are in explicit form. Apply them back.
                    538: *
                    539:       NDB1 = ( ND+1 ) / 2
                    540:       DO 320 I = NDB1, ND
                    541:          I1 = I - 1
                    542:          IC = IWORK( INODE+I1 )
                    543:          NL = IWORK( NDIML+I1 )
                    544:          NR = IWORK( NDIMR+I1 )
                    545:          NLP1 = NL + 1
                    546:          IF( I.EQ.ND ) THEN
                    547:             NRP1 = NR
                    548:          ELSE
                    549:             NRP1 = NR + 1
                    550:          END IF
                    551:          NLF = IC - NL
                    552:          NRF = IC + 1
                    553: *
                    554: *        Since B and BX are complex, the following call to DGEMM is
                    555: *        performed in two steps (real and imaginary parts).
                    556: *
                    557: *        CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    558: *    $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
                    559: *
                    560:          J = NLP1*NRHS*2
                    561:          DO 210 JCOL = 1, NRHS
                    562:             DO 200 JROW = NLF, NLF + NLP1 - 1
                    563:                J = J + 1
                    564:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    565:   200       CONTINUE
                    566:   210    CONTINUE
                    567:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    568:      $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, RWORK( 1 ),
                    569:      $               NLP1 )
                    570:          J = NLP1*NRHS*2
                    571:          DO 230 JCOL = 1, NRHS
                    572:             DO 220 JROW = NLF, NLF + NLP1 - 1
                    573:                J = J + 1
                    574:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    575:   220       CONTINUE
                    576:   230    CONTINUE
                    577:          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
                    578:      $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO,
                    579:      $               RWORK( 1+NLP1*NRHS ), NLP1 )
                    580:          JREAL = 0
                    581:          JIMAG = NLP1*NRHS
                    582:          DO 250 JCOL = 1, NRHS
                    583:             DO 240 JROW = NLF, NLF + NLP1 - 1
                    584:                JREAL = JREAL + 1
                    585:                JIMAG = JIMAG + 1
                    586:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    587:      $                            RWORK( JIMAG ) )
                    588:   240       CONTINUE
                    589:   250    CONTINUE
                    590: *
                    591: *        Since B and BX are complex, the following call to DGEMM is
                    592: *        performed in two steps (real and imaginary parts).
                    593: *
                    594: *        CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    595: *    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
                    596: *
                    597:          J = NRP1*NRHS*2
                    598:          DO 270 JCOL = 1, NRHS
                    599:             DO 260 JROW = NRF, NRF + NRP1 - 1
                    600:                J = J + 1
                    601:                RWORK( J ) = DBLE( B( JROW, JCOL ) )
                    602:   260       CONTINUE
                    603:   270    CONTINUE
                    604:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    605:      $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, RWORK( 1 ),
                    606:      $               NRP1 )
                    607:          J = NRP1*NRHS*2
                    608:          DO 290 JCOL = 1, NRHS
                    609:             DO 280 JROW = NRF, NRF + NRP1 - 1
                    610:                J = J + 1
                    611:                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
                    612:   280       CONTINUE
                    613:   290    CONTINUE
                    614:          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
                    615:      $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO,
                    616:      $               RWORK( 1+NRP1*NRHS ), NRP1 )
                    617:          JREAL = 0
                    618:          JIMAG = NRP1*NRHS
                    619:          DO 310 JCOL = 1, NRHS
                    620:             DO 300 JROW = NRF, NRF + NRP1 - 1
                    621:                JREAL = JREAL + 1
                    622:                JIMAG = JIMAG + 1
                    623:                BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
                    624:      $                            RWORK( JIMAG ) )
                    625:   300       CONTINUE
                    626:   310    CONTINUE
                    627: *
                    628:   320 CONTINUE
                    629: *
                    630:   330 CONTINUE
                    631: *
                    632:       RETURN
                    633: *
                    634: *     End of ZLALSA
                    635: *
                    636:       END

CVSweb interface <joel.bertrand@systella.fr>