Annotation of rpl/lapack/lapack/zlahr2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
        !             2: *
        !             3: *  -- LAPACK auxiliary routine (version 3.2.1)                        --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *  -- April 2009                                                      --
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            K, LDA, LDT, LDY, N, NB
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       COMPLEX*16        A( LDA, * ), T( LDT, NB ), TAU( NB ),
        !            13:      $                   Y( LDY, NB )
        !            14: *     ..
        !            15: *
        !            16: *  Purpose
        !            17: *  =======
        !            18: *
        !            19: *  ZLAHR2 reduces the first NB columns of A complex general n-BY-(n-k+1)
        !            20: *  matrix A so that elements below the k-th subdiagonal are zero. The
        !            21: *  reduction is performed by an unitary similarity transformation
        !            22: *  Q' * A * Q. The routine returns the matrices V and T which determine
        !            23: *  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
        !            24: *
        !            25: *  This is an auxiliary routine called by ZGEHRD.
        !            26: *
        !            27: *  Arguments
        !            28: *  =========
        !            29: *
        !            30: *  N       (input) INTEGER
        !            31: *          The order of the matrix A.
        !            32: *
        !            33: *  K       (input) INTEGER
        !            34: *          The offset for the reduction. Elements below the k-th
        !            35: *          subdiagonal in the first NB columns are reduced to zero.
        !            36: *          K < N.
        !            37: *
        !            38: *  NB      (input) INTEGER
        !            39: *          The number of columns to be reduced.
        !            40: *
        !            41: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N-K+1)
        !            42: *          On entry, the n-by-(n-k+1) general matrix A.
        !            43: *          On exit, the elements on and above the k-th subdiagonal in
        !            44: *          the first NB columns are overwritten with the corresponding
        !            45: *          elements of the reduced matrix; the elements below the k-th
        !            46: *          subdiagonal, with the array TAU, represent the matrix Q as a
        !            47: *          product of elementary reflectors. The other columns of A are
        !            48: *          unchanged. See Further Details.
        !            49: *
        !            50: *  LDA     (input) INTEGER
        !            51: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            52: *
        !            53: *  TAU     (output) COMPLEX*16 array, dimension (NB)
        !            54: *          The scalar factors of the elementary reflectors. See Further
        !            55: *          Details.
        !            56: *
        !            57: *  T       (output) COMPLEX*16 array, dimension (LDT,NB)
        !            58: *          The upper triangular matrix T.
        !            59: *
        !            60: *  LDT     (input) INTEGER
        !            61: *          The leading dimension of the array T.  LDT >= NB.
        !            62: *
        !            63: *  Y       (output) COMPLEX*16 array, dimension (LDY,NB)
        !            64: *          The n-by-nb matrix Y.
        !            65: *
        !            66: *  LDY     (input) INTEGER
        !            67: *          The leading dimension of the array Y. LDY >= N.
        !            68: *
        !            69: *  Further Details
        !            70: *  ===============
        !            71: *
        !            72: *  The matrix Q is represented as a product of nb elementary reflectors
        !            73: *
        !            74: *     Q = H(1) H(2) . . . H(nb).
        !            75: *
        !            76: *  Each H(i) has the form
        !            77: *
        !            78: *     H(i) = I - tau * v * v'
        !            79: *
        !            80: *  where tau is a complex scalar, and v is a complex vector with
        !            81: *  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
        !            82: *  A(i+k+1:n,i), and tau in TAU(i).
        !            83: *
        !            84: *  The elements of the vectors v together form the (n-k+1)-by-nb matrix
        !            85: *  V which is needed, with T and Y, to apply the transformation to the
        !            86: *  unreduced part of the matrix, using an update of the form:
        !            87: *  A := (I - V*T*V') * (A - Y*V').
        !            88: *
        !            89: *  The contents of A on exit are illustrated by the following example
        !            90: *  with n = 7, k = 3 and nb = 2:
        !            91: *
        !            92: *     ( a   a   a   a   a )
        !            93: *     ( a   a   a   a   a )
        !            94: *     ( a   a   a   a   a )
        !            95: *     ( h   h   a   a   a )
        !            96: *     ( v1  h   a   a   a )
        !            97: *     ( v1  v2  a   a   a )
        !            98: *     ( v1  v2  a   a   a )
        !            99: *
        !           100: *  where a denotes an element of the original matrix A, h denotes a
        !           101: *  modified element of the upper Hessenberg matrix H, and vi denotes an
        !           102: *  element of the vector defining H(i).
        !           103: *
        !           104: *  This subroutine is a slight modification of LAPACK-3.0's DLAHRD
        !           105: *  incorporating improvements proposed by Quintana-Orti and Van de
        !           106: *  Gejin. Note that the entries of A(1:K,2:NB) differ from those
        !           107: *  returned by the original LAPACK-3.0's DLAHRD routine. (This
        !           108: *  subroutine is not backward compatible with LAPACK-3.0's DLAHRD.)
        !           109: *
        !           110: *  References
        !           111: *  ==========
        !           112: *
        !           113: *  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
        !           114: *  performance of reduction to Hessenberg form," ACM Transactions on
        !           115: *  Mathematical Software, 32(2):180-194, June 2006.
        !           116: *
        !           117: *  =====================================================================
        !           118: *
        !           119: *     .. Parameters ..
        !           120:       COMPLEX*16        ZERO, ONE
        !           121:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ), 
        !           122:      $                     ONE = ( 1.0D+0, 0.0D+0 ) )
        !           123: *     ..
        !           124: *     .. Local Scalars ..
        !           125:       INTEGER            I
        !           126:       COMPLEX*16        EI
        !           127: *     ..
        !           128: *     .. External Subroutines ..
        !           129:       EXTERNAL           ZAXPY, ZCOPY, ZGEMM, ZGEMV, ZLACPY,
        !           130:      $                   ZLARFG, ZSCAL, ZTRMM, ZTRMV, ZLACGV
        !           131: *     ..
        !           132: *     .. Intrinsic Functions ..
        !           133:       INTRINSIC          MIN
        !           134: *     ..
        !           135: *     .. Executable Statements ..
        !           136: *
        !           137: *     Quick return if possible
        !           138: *
        !           139:       IF( N.LE.1 )
        !           140:      $   RETURN
        !           141: *
        !           142:       DO 10 I = 1, NB
        !           143:          IF( I.GT.1 ) THEN
        !           144: *
        !           145: *           Update A(K+1:N,I)
        !           146: *
        !           147: *           Update I-th column of A - Y * V'
        !           148: *
        !           149:             CALL ZLACGV( I-1, A( K+I-1, 1 ), LDA ) 
        !           150:             CALL ZGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
        !           151:      $                  A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
        !           152:             CALL ZLACGV( I-1, A( K+I-1, 1 ), LDA ) 
        !           153: *
        !           154: *           Apply I - V * T' * V' to this column (call it b) from the
        !           155: *           left, using the last column of T as workspace
        !           156: *
        !           157: *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
        !           158: *                    ( V2 )             ( b2 )
        !           159: *
        !           160: *           where V1 is unit lower triangular
        !           161: *
        !           162: *           w := V1' * b1
        !           163: *
        !           164:             CALL ZCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
        !           165:             CALL ZTRMV( 'Lower', 'Conjugate transpose', 'UNIT', 
        !           166:      $                  I-1, A( K+1, 1 ),
        !           167:      $                  LDA, T( 1, NB ), 1 )
        !           168: *
        !           169: *           w := w + V2'*b2
        !           170: *
        !           171:             CALL ZGEMV( 'Conjugate transpose', N-K-I+1, I-1, 
        !           172:      $                  ONE, A( K+I, 1 ),
        !           173:      $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
        !           174: *
        !           175: *           w := T'*w
        !           176: *
        !           177:             CALL ZTRMV( 'Upper', 'Conjugate transpose', 'NON-UNIT', 
        !           178:      $                  I-1, T, LDT,
        !           179:      $                  T( 1, NB ), 1 )
        !           180: *
        !           181: *           b2 := b2 - V2*w
        !           182: *
        !           183:             CALL ZGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE, 
        !           184:      $                  A( K+I, 1 ),
        !           185:      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
        !           186: *
        !           187: *           b1 := b1 - V1*w
        !           188: *
        !           189:             CALL ZTRMV( 'Lower', 'NO TRANSPOSE', 
        !           190:      $                  'UNIT', I-1,
        !           191:      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
        !           192:             CALL ZAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
        !           193: *
        !           194:             A( K+I-1, I-1 ) = EI
        !           195:          END IF
        !           196: *
        !           197: *        Generate the elementary reflector H(I) to annihilate
        !           198: *        A(K+I+1:N,I)
        !           199: *
        !           200:          CALL ZLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
        !           201:      $                TAU( I ) )
        !           202:          EI = A( K+I, I )
        !           203:          A( K+I, I ) = ONE
        !           204: *
        !           205: *        Compute  Y(K+1:N,I)
        !           206: *
        !           207:          CALL ZGEMV( 'NO TRANSPOSE', N-K, N-K-I+1, 
        !           208:      $               ONE, A( K+1, I+1 ),
        !           209:      $               LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
        !           210:          CALL ZGEMV( 'Conjugate transpose', N-K-I+1, I-1, 
        !           211:      $               ONE, A( K+I, 1 ), LDA,
        !           212:      $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
        !           213:          CALL ZGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, 
        !           214:      $               Y( K+1, 1 ), LDY,
        !           215:      $               T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
        !           216:          CALL ZSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
        !           217: *
        !           218: *        Compute T(1:I,I)
        !           219: *
        !           220:          CALL ZSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
        !           221:          CALL ZTRMV( 'Upper', 'No Transpose', 'NON-UNIT', 
        !           222:      $               I-1, T, LDT,
        !           223:      $               T( 1, I ), 1 )
        !           224:          T( I, I ) = TAU( I )
        !           225: *
        !           226:    10 CONTINUE
        !           227:       A( K+NB, NB ) = EI
        !           228: *
        !           229: *     Compute Y(1:K,1:NB)
        !           230: *
        !           231:       CALL ZLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
        !           232:       CALL ZTRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE', 
        !           233:      $            'UNIT', K, NB,
        !           234:      $            ONE, A( K+1, 1 ), LDA, Y, LDY )
        !           235:       IF( N.GT.K+NB )
        !           236:      $   CALL ZGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K, 
        !           237:      $               NB, N-K-NB, ONE,
        !           238:      $               A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
        !           239:      $               LDY )
        !           240:       CALL ZTRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE', 
        !           241:      $            'NON-UNIT', K, NB,
        !           242:      $            ONE, T, LDT, Y, LDY )
        !           243: *
        !           244:       RETURN
        !           245: *
        !           246: *     End of ZLAHR2
        !           247: *
        !           248:       END

CVSweb interface <joel.bertrand@systella.fr>