Annotation of rpl/lapack/lapack/zlahqr.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
                      2:      $                   IHIZ, Z, LDZ, INFO )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
                     10:       LOGICAL            WANTT, WANTZ
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
                     14: *     ..
                     15: *
                     16: *     Purpose
                     17: *     =======
                     18: *
                     19: *     ZLAHQR is an auxiliary routine called by CHSEQR to update the
                     20: *     eigenvalues and Schur decomposition already computed by CHSEQR, by
                     21: *     dealing with the Hessenberg submatrix in rows and columns ILO to
                     22: *     IHI.
                     23: *
                     24: *     Arguments
                     25: *     =========
                     26: *
                     27: *     WANTT   (input) LOGICAL
                     28: *          = .TRUE. : the full Schur form T is required;
                     29: *          = .FALSE.: only eigenvalues are required.
                     30: *
                     31: *     WANTZ   (input) LOGICAL
                     32: *          = .TRUE. : the matrix of Schur vectors Z is required;
                     33: *          = .FALSE.: Schur vectors are not required.
                     34: *
                     35: *     N       (input) INTEGER
                     36: *          The order of the matrix H.  N >= 0.
                     37: *
                     38: *     ILO     (input) INTEGER
                     39: *     IHI     (input) INTEGER
                     40: *          It is assumed that H is already upper triangular in rows and
                     41: *          columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
                     42: *          ZLAHQR works primarily with the Hessenberg submatrix in rows
                     43: *          and columns ILO to IHI, but applies transformations to all of
                     44: *          H if WANTT is .TRUE..
                     45: *          1 <= ILO <= max(1,IHI); IHI <= N.
                     46: *
                     47: *     H       (input/output) COMPLEX*16 array, dimension (LDH,N)
                     48: *          On entry, the upper Hessenberg matrix H.
                     49: *          On exit, if INFO is zero and if WANTT is .TRUE., then H
                     50: *          is upper triangular in rows and columns ILO:IHI.  If INFO
                     51: *          is zero and if WANTT is .FALSE., then the contents of H
                     52: *          are unspecified on exit.  The output state of H in case
                     53: *          INF is positive is below under the description of INFO.
                     54: *
                     55: *     LDH     (input) INTEGER
                     56: *          The leading dimension of the array H. LDH >= max(1,N).
                     57: *
                     58: *     W       (output) COMPLEX*16 array, dimension (N)
                     59: *          The computed eigenvalues ILO to IHI are stored in the
                     60: *          corresponding elements of W. If WANTT is .TRUE., the
                     61: *          eigenvalues are stored in the same order as on the diagonal
                     62: *          of the Schur form returned in H, with W(i) = H(i,i).
                     63: *
                     64: *     ILOZ    (input) INTEGER
                     65: *     IHIZ    (input) INTEGER
                     66: *          Specify the rows of Z to which transformations must be
                     67: *          applied if WANTZ is .TRUE..
                     68: *          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
                     69: *
                     70: *     Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
                     71: *          If WANTZ is .TRUE., on entry Z must contain the current
                     72: *          matrix Z of transformations accumulated by CHSEQR, and on
                     73: *          exit Z has been updated; transformations are applied only to
                     74: *          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
                     75: *          If WANTZ is .FALSE., Z is not referenced.
                     76: *
                     77: *     LDZ     (input) INTEGER
                     78: *          The leading dimension of the array Z. LDZ >= max(1,N).
                     79: *
                     80: *     INFO    (output) INTEGER
                     81: *           =   0: successful exit
                     82: *          .GT. 0: if INFO = i, ZLAHQR failed to compute all the
                     83: *                  eigenvalues ILO to IHI in a total of 30 iterations
                     84: *                  per eigenvalue; elements i+1:ihi of W contain
                     85: *                  those eigenvalues which have been successfully
                     86: *                  computed.
                     87: *
                     88: *                  If INFO .GT. 0 and WANTT is .FALSE., then on exit,
                     89: *                  the remaining unconverged eigenvalues are the
                     90: *                  eigenvalues of the upper Hessenberg matrix
                     91: *                  rows and columns ILO thorugh INFO of the final,
                     92: *                  output value of H.
                     93: *
                     94: *                  If INFO .GT. 0 and WANTT is .TRUE., then on exit
                     95: *          (*)       (initial value of H)*U  = U*(final value of H)
                     96: *                  where U is an orthognal matrix.    The final
                     97: *                  value of H is upper Hessenberg and triangular in
                     98: *                  rows and columns INFO+1 through IHI.
                     99: *
                    100: *                  If INFO .GT. 0 and WANTZ is .TRUE., then on exit
                    101: *                      (final value of Z)  = (initial value of Z)*U
                    102: *                  where U is the orthogonal matrix in (*)
                    103: *                  (regardless of the value of WANTT.)
                    104: *
                    105: *     Further Details
                    106: *     ===============
                    107: *
                    108: *     02-96 Based on modifications by
                    109: *     David Day, Sandia National Laboratory, USA
                    110: *
                    111: *     12-04 Further modifications by
                    112: *     Ralph Byers, University of Kansas, USA
                    113: *     This is a modified version of ZLAHQR from LAPACK version 3.0.
                    114: *     It is (1) more robust against overflow and underflow and
                    115: *     (2) adopts the more conservative Ahues & Tisseur stopping
                    116: *     criterion (LAWN 122, 1997).
                    117: *
                    118: *     =========================================================
                    119: *
                    120: *     .. Parameters ..
                    121:       INTEGER            ITMAX
                    122:       PARAMETER          ( ITMAX = 30 )
                    123:       COMPLEX*16         ZERO, ONE
                    124:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
                    125:      $                   ONE = ( 1.0d0, 0.0d0 ) )
                    126:       DOUBLE PRECISION   RZERO, RONE, HALF
                    127:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0, HALF = 0.5d0 )
                    128:       DOUBLE PRECISION   DAT1
                    129:       PARAMETER          ( DAT1 = 3.0d0 / 4.0d0 )
                    130: *     ..
                    131: *     .. Local Scalars ..
                    132:       COMPLEX*16         CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
                    133:      $                   V2, X, Y
                    134:       DOUBLE PRECISION   AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
                    135:      $                   SAFMIN, SMLNUM, SX, T2, TST, ULP
                    136:       INTEGER            I, I1, I2, ITS, J, JHI, JLO, K, L, M, NH, NZ
                    137: *     ..
                    138: *     .. Local Arrays ..
                    139:       COMPLEX*16         V( 2 )
                    140: *     ..
                    141: *     .. External Functions ..
                    142:       COMPLEX*16         ZLADIV
                    143:       DOUBLE PRECISION   DLAMCH
                    144:       EXTERNAL           ZLADIV, DLAMCH
                    145: *     ..
                    146: *     .. External Subroutines ..
                    147:       EXTERNAL           DLABAD, ZCOPY, ZLARFG, ZSCAL
                    148: *     ..
                    149: *     .. Statement Functions ..
                    150:       DOUBLE PRECISION   CABS1
                    151: *     ..
                    152: *     .. Intrinsic Functions ..
                    153:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
                    154: *     ..
                    155: *     .. Statement Function definitions ..
                    156:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    157: *     ..
                    158: *     .. Executable Statements ..
                    159: *
                    160:       INFO = 0
                    161: *
                    162: *     Quick return if possible
                    163: *
                    164:       IF( N.EQ.0 )
                    165:      $   RETURN
                    166:       IF( ILO.EQ.IHI ) THEN
                    167:          W( ILO ) = H( ILO, ILO )
                    168:          RETURN
                    169:       END IF
                    170: *
                    171: *     ==== clear out the trash ====
                    172:       DO 10 J = ILO, IHI - 3
                    173:          H( J+2, J ) = ZERO
                    174:          H( J+3, J ) = ZERO
                    175:    10 CONTINUE
                    176:       IF( ILO.LE.IHI-2 )
                    177:      $   H( IHI, IHI-2 ) = ZERO
                    178: *     ==== ensure that subdiagonal entries are real ====
                    179:       IF( WANTT ) THEN
                    180:          JLO = 1
                    181:          JHI = N
                    182:       ELSE
                    183:          JLO = ILO
                    184:          JHI = IHI
                    185:       END IF
                    186:       DO 20 I = ILO + 1, IHI
                    187:          IF( DIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
                    188: *           ==== The following redundant normalization
                    189: *           .    avoids problems with both gradual and
                    190: *           .    sudden underflow in ABS(H(I,I-1)) ====
                    191:             SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
                    192:             SC = DCONJG( SC ) / ABS( SC )
                    193:             H( I, I-1 ) = ABS( H( I, I-1 ) )
                    194:             CALL ZSCAL( JHI-I+1, SC, H( I, I ), LDH )
                    195:             CALL ZSCAL( MIN( JHI, I+1 )-JLO+1, DCONJG( SC ),
                    196:      $                  H( JLO, I ), 1 )
                    197:             IF( WANTZ )
                    198:      $         CALL ZSCAL( IHIZ-ILOZ+1, DCONJG( SC ), Z( ILOZ, I ), 1 )
                    199:          END IF
                    200:    20 CONTINUE
                    201: *
                    202:       NH = IHI - ILO + 1
                    203:       NZ = IHIZ - ILOZ + 1
                    204: *
                    205: *     Set machine-dependent constants for the stopping criterion.
                    206: *
                    207:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    208:       SAFMAX = RONE / SAFMIN
                    209:       CALL DLABAD( SAFMIN, SAFMAX )
                    210:       ULP = DLAMCH( 'PRECISION' )
                    211:       SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
                    212: *
                    213: *     I1 and I2 are the indices of the first row and last column of H
                    214: *     to which transformations must be applied. If eigenvalues only are
                    215: *     being computed, I1 and I2 are set inside the main loop.
                    216: *
                    217:       IF( WANTT ) THEN
                    218:          I1 = 1
                    219:          I2 = N
                    220:       END IF
                    221: *
                    222: *     The main loop begins here. I is the loop index and decreases from
                    223: *     IHI to ILO in steps of 1. Each iteration of the loop works
                    224: *     with the active submatrix in rows and columns L to I.
                    225: *     Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
                    226: *     H(L,L-1) is negligible so that the matrix splits.
                    227: *
                    228:       I = IHI
                    229:    30 CONTINUE
                    230:       IF( I.LT.ILO )
                    231:      $   GO TO 150
                    232: *
                    233: *     Perform QR iterations on rows and columns ILO to I until a
                    234: *     submatrix of order 1 splits off at the bottom because a
                    235: *     subdiagonal element has become negligible.
                    236: *
                    237:       L = ILO
                    238:       DO 130 ITS = 0, ITMAX
                    239: *
                    240: *        Look for a single small subdiagonal element.
                    241: *
                    242:          DO 40 K = I, L + 1, -1
                    243:             IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
                    244:      $         GO TO 50
                    245:             TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
                    246:             IF( TST.EQ.ZERO ) THEN
                    247:                IF( K-2.GE.ILO )
                    248:      $            TST = TST + ABS( DBLE( H( K-1, K-2 ) ) )
                    249:                IF( K+1.LE.IHI )
                    250:      $            TST = TST + ABS( DBLE( H( K+1, K ) ) )
                    251:             END IF
                    252: *           ==== The following is a conservative small subdiagonal
                    253: *           .    deflation criterion due to Ahues & Tisseur (LAWN 122,
                    254: *           .    1997). It has better mathematical foundation and
                    255: *           .    improves accuracy in some examples.  ====
                    256:             IF( ABS( DBLE( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
                    257:                AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
                    258:                BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
                    259:                AA = MAX( CABS1( H( K, K ) ),
                    260:      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
                    261:                BB = MIN( CABS1( H( K, K ) ),
                    262:      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
                    263:                S = AA + AB
                    264:                IF( BA*( AB / S ).LE.MAX( SMLNUM,
                    265:      $             ULP*( BB*( AA / S ) ) ) )GO TO 50
                    266:             END IF
                    267:    40    CONTINUE
                    268:    50    CONTINUE
                    269:          L = K
                    270:          IF( L.GT.ILO ) THEN
                    271: *
                    272: *           H(L,L-1) is negligible
                    273: *
                    274:             H( L, L-1 ) = ZERO
                    275:          END IF
                    276: *
                    277: *        Exit from loop if a submatrix of order 1 has split off.
                    278: *
                    279:          IF( L.GE.I )
                    280:      $      GO TO 140
                    281: *
                    282: *        Now the active submatrix is in rows and columns L to I. If
                    283: *        eigenvalues only are being computed, only the active submatrix
                    284: *        need be transformed.
                    285: *
                    286:          IF( .NOT.WANTT ) THEN
                    287:             I1 = L
                    288:             I2 = I
                    289:          END IF
                    290: *
                    291:          IF( ITS.EQ.10 ) THEN
                    292: *
                    293: *           Exceptional shift.
                    294: *
                    295:             S = DAT1*ABS( DBLE( H( L+1, L ) ) )
                    296:             T = S + H( L, L )
                    297:          ELSE IF( ITS.EQ.20 ) THEN
                    298: *
                    299: *           Exceptional shift.
                    300: *
                    301:             S = DAT1*ABS( DBLE( H( I, I-1 ) ) )
                    302:             T = S + H( I, I )
                    303:          ELSE
                    304: *
                    305: *           Wilkinson's shift.
                    306: *
                    307:             T = H( I, I )
                    308:             U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
                    309:             S = CABS1( U )
                    310:             IF( S.NE.RZERO ) THEN
                    311:                X = HALF*( H( I-1, I-1 )-T )
                    312:                SX = CABS1( X )
                    313:                S = MAX( S, CABS1( X ) )
                    314:                Y = S*SQRT( ( X / S )**2+( U / S )**2 )
                    315:                IF( SX.GT.RZERO ) THEN
                    316:                   IF( DBLE( X / SX )*DBLE( Y )+DIMAG( X / SX )*
                    317:      $                DIMAG( Y ).LT.RZERO )Y = -Y
                    318:                END IF
                    319:                T = T - U*ZLADIV( U, ( X+Y ) )
                    320:             END IF
                    321:          END IF
                    322: *
                    323: *        Look for two consecutive small subdiagonal elements.
                    324: *
                    325:          DO 60 M = I - 1, L + 1, -1
                    326: *
                    327: *           Determine the effect of starting the single-shift QR
                    328: *           iteration at row M, and see if this would make H(M,M-1)
                    329: *           negligible.
                    330: *
                    331:             H11 = H( M, M )
                    332:             H22 = H( M+1, M+1 )
                    333:             H11S = H11 - T
                    334:             H21 = DBLE( H( M+1, M ) )
                    335:             S = CABS1( H11S ) + ABS( H21 )
                    336:             H11S = H11S / S
                    337:             H21 = H21 / S
                    338:             V( 1 ) = H11S
                    339:             V( 2 ) = H21
                    340:             H10 = DBLE( H( M, M-1 ) )
                    341:             IF( ABS( H10 )*ABS( H21 ).LE.ULP*
                    342:      $          ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
                    343:      $          GO TO 70
                    344:    60    CONTINUE
                    345:          H11 = H( L, L )
                    346:          H22 = H( L+1, L+1 )
                    347:          H11S = H11 - T
                    348:          H21 = DBLE( H( L+1, L ) )
                    349:          S = CABS1( H11S ) + ABS( H21 )
                    350:          H11S = H11S / S
                    351:          H21 = H21 / S
                    352:          V( 1 ) = H11S
                    353:          V( 2 ) = H21
                    354:    70    CONTINUE
                    355: *
                    356: *        Single-shift QR step
                    357: *
                    358:          DO 120 K = M, I - 1
                    359: *
                    360: *           The first iteration of this loop determines a reflection G
                    361: *           from the vector V and applies it from left and right to H,
                    362: *           thus creating a nonzero bulge below the subdiagonal.
                    363: *
                    364: *           Each subsequent iteration determines a reflection G to
                    365: *           restore the Hessenberg form in the (K-1)th column, and thus
                    366: *           chases the bulge one step toward the bottom of the active
                    367: *           submatrix.
                    368: *
                    369: *           V(2) is always real before the call to ZLARFG, and hence
                    370: *           after the call T2 ( = T1*V(2) ) is also real.
                    371: *
                    372:             IF( K.GT.M )
                    373:      $         CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
                    374:             CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
                    375:             IF( K.GT.M ) THEN
                    376:                H( K, K-1 ) = V( 1 )
                    377:                H( K+1, K-1 ) = ZERO
                    378:             END IF
                    379:             V2 = V( 2 )
                    380:             T2 = DBLE( T1*V2 )
                    381: *
                    382: *           Apply G from the left to transform the rows of the matrix
                    383: *           in columns K to I2.
                    384: *
                    385:             DO 80 J = K, I2
                    386:                SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
                    387:                H( K, J ) = H( K, J ) - SUM
                    388:                H( K+1, J ) = H( K+1, J ) - SUM*V2
                    389:    80       CONTINUE
                    390: *
                    391: *           Apply G from the right to transform the columns of the
                    392: *           matrix in rows I1 to min(K+2,I).
                    393: *
                    394:             DO 90 J = I1, MIN( K+2, I )
                    395:                SUM = T1*H( J, K ) + T2*H( J, K+1 )
                    396:                H( J, K ) = H( J, K ) - SUM
                    397:                H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
                    398:    90       CONTINUE
                    399: *
                    400:             IF( WANTZ ) THEN
                    401: *
                    402: *              Accumulate transformations in the matrix Z
                    403: *
                    404:                DO 100 J = ILOZ, IHIZ
                    405:                   SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
                    406:                   Z( J, K ) = Z( J, K ) - SUM
                    407:                   Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
                    408:   100          CONTINUE
                    409:             END IF
                    410: *
                    411:             IF( K.EQ.M .AND. M.GT.L ) THEN
                    412: *
                    413: *              If the QR step was started at row M > L because two
                    414: *              consecutive small subdiagonals were found, then extra
                    415: *              scaling must be performed to ensure that H(M,M-1) remains
                    416: *              real.
                    417: *
                    418:                TEMP = ONE - T1
                    419:                TEMP = TEMP / ABS( TEMP )
                    420:                H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
                    421:                IF( M+2.LE.I )
                    422:      $            H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
                    423:                DO 110 J = M, I
                    424:                   IF( J.NE.M+1 ) THEN
                    425:                      IF( I2.GT.J )
                    426:      $                  CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
                    427:                      CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
                    428:                      IF( WANTZ ) THEN
                    429:                         CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
                    430:      $                              1 )
                    431:                      END IF
                    432:                   END IF
                    433:   110          CONTINUE
                    434:             END IF
                    435:   120    CONTINUE
                    436: *
                    437: *        Ensure that H(I,I-1) is real.
                    438: *
                    439:          TEMP = H( I, I-1 )
                    440:          IF( DIMAG( TEMP ).NE.RZERO ) THEN
                    441:             RTEMP = ABS( TEMP )
                    442:             H( I, I-1 ) = RTEMP
                    443:             TEMP = TEMP / RTEMP
                    444:             IF( I2.GT.I )
                    445:      $         CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
                    446:             CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
                    447:             IF( WANTZ ) THEN
                    448:                CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
                    449:             END IF
                    450:          END IF
                    451: *
                    452:   130 CONTINUE
                    453: *
                    454: *     Failure to converge in remaining number of iterations
                    455: *
                    456:       INFO = I
                    457:       RETURN
                    458: *
                    459:   140 CONTINUE
                    460: *
                    461: *     H(I,I-1) is negligible: one eigenvalue has converged.
                    462: *
                    463:       W( I ) = H( I, I )
                    464: *
                    465: *     return to start of the main loop with new value of I.
                    466: *
                    467:       I = L - 1
                    468:       GO TO 30
                    469: *
                    470:   150 CONTINUE
                    471:       RETURN
                    472: *
                    473: *     End of ZLAHQR
                    474: *
                    475:       END

CVSweb interface <joel.bertrand@systella.fr>