File:  [local] / rpl / lapack / lapack / zlahef_rook.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:29 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: * \brief \b ZLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAHEF_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLAHEF_ROOK computes a partial factorization of a complex Hermitian
   39: *> matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting
   40: *> method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0      I     )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *> Note that U**H denotes the conjugate transpose of U.
   51: *>
   52: *> ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses
   53: *> blocked code (calling Level 3 BLAS) to update the submatrix
   54: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] UPLO
   61: *> \verbatim
   62: *>          UPLO is CHARACTER*1
   63: *>          Specifies whether the upper or lower triangular part of the
   64: *>          Hermitian matrix A is stored:
   65: *>          = 'U':  Upper triangular
   66: *>          = 'L':  Lower triangular
   67: *> \endverbatim
   68: *>
   69: *> \param[in] N
   70: *> \verbatim
   71: *>          N is INTEGER
   72: *>          The order of the matrix A.  N >= 0.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] NB
   76: *> \verbatim
   77: *>          NB is INTEGER
   78: *>          The maximum number of columns of the matrix A that should be
   79: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   80: *>          blocks.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] KB
   84: *> \verbatim
   85: *>          KB is INTEGER
   86: *>          The number of columns of A that were actually factored.
   87: *>          KB is either NB-1 or NB, or N if N <= NB.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] A
   91: *> \verbatim
   92: *>          A is COMPLEX*16 array, dimension (LDA,N)
   93: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   94: *>          n-by-n upper triangular part of A contains the upper
   95: *>          triangular part of the matrix A, and the strictly lower
   96: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   97: *>          leading n-by-n lower triangular part of A contains the lower
   98: *>          triangular part of the matrix A, and the strictly upper
   99: *>          triangular part of A is not referenced.
  100: *>          On exit, A contains details of the partial factorization.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] IPIV
  110: *> \verbatim
  111: *>          IPIV is INTEGER array, dimension (N)
  112: *>          Details of the interchanges and the block structure of D.
  113: *>
  114: *>          If UPLO = 'U':
  115: *>             Only the last KB elements of IPIV are set.
  116: *>
  117: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  118: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  119: *>
  120: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  121: *>             columns k and -IPIV(k) were interchanged and rows and
  122: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  123: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  124: *>
  125: *>          If UPLO = 'L':
  126: *>             Only the first KB elements of IPIV are set.
  127: *>
  128: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  129: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  130: *>
  131: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  132: *>             columns k and -IPIV(k) were interchanged and rows and
  133: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  134: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] W
  138: *> \verbatim
  139: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LDW
  143: *> \verbatim
  144: *>          LDW is INTEGER
  145: *>          The leading dimension of the array W.  LDW >= max(1,N).
  146: *> \endverbatim
  147: *>
  148: *> \param[out] INFO
  149: *> \verbatim
  150: *>          INFO is INTEGER
  151: *>          = 0: successful exit
  152: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  153: *>               has been completed, but the block diagonal matrix D is
  154: *>               exactly singular.
  155: *> \endverbatim
  156: *
  157: *  Authors:
  158: *  ========
  159: *
  160: *> \author Univ. of Tennessee
  161: *> \author Univ. of California Berkeley
  162: *> \author Univ. of Colorado Denver
  163: *> \author NAG Ltd.
  164: *
  165: *> \ingroup complex16HEcomputational
  166: *
  167: *> \par Contributors:
  168: *  ==================
  169: *>
  170: *> \verbatim
  171: *>
  172: *>  November 2013,  Igor Kozachenko,
  173: *>                  Computer Science Division,
  174: *>                  University of California, Berkeley
  175: *>
  176: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  177: *>                  School of Mathematics,
  178: *>                  University of Manchester
  179: *> \endverbatim
  180: *
  181: *  =====================================================================
  182:       SUBROUTINE ZLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
  183:      $                        INFO )
  184: *
  185: *  -- LAPACK computational routine --
  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188: *
  189: *     .. Scalar Arguments ..
  190:       CHARACTER          UPLO
  191:       INTEGER            INFO, KB, LDA, LDW, N, NB
  192: *     ..
  193: *     .. Array Arguments ..
  194:       INTEGER            IPIV( * )
  195:       COMPLEX*16         A( LDA, * ), W( LDW, * )
  196: *     ..
  197: *
  198: *  =====================================================================
  199: *
  200: *     .. Parameters ..
  201:       DOUBLE PRECISION   ZERO, ONE
  202:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  203:       COMPLEX*16         CONE
  204:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  205:       DOUBLE PRECISION   EIGHT, SEVTEN
  206:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  207: *     ..
  208: *     .. Local Scalars ..
  209:       LOGICAL            DONE
  210:       INTEGER            IMAX, ITEMP, II, J, JB, JJ, JMAX, JP1, JP2, K,
  211:      $                   KK, KKW, KP, KSTEP, KW, P
  212:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, DTEMP, R1, ROWMAX, T,
  213:      $                   SFMIN
  214:       COMPLEX*16         D11, D21, D22, Z
  215: *     ..
  216: *     .. External Functions ..
  217:       LOGICAL            LSAME
  218:       INTEGER            IZAMAX
  219:       DOUBLE PRECISION   DLAMCH
  220:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  221: *     ..
  222: *     .. External Subroutines ..
  223:       EXTERNAL           ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
  224: *     ..
  225: *     .. Intrinsic Functions ..
  226:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
  227: *     ..
  228: *     .. Statement Functions ..
  229:       DOUBLE PRECISION   CABS1
  230: *     ..
  231: *     .. Statement Function definitions ..
  232:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  233: *     ..
  234: *     .. Executable Statements ..
  235: *
  236:       INFO = 0
  237: *
  238: *     Initialize ALPHA for use in choosing pivot block size.
  239: *
  240:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  241: *
  242: *     Compute machine safe minimum
  243: *
  244:       SFMIN = DLAMCH( 'S' )
  245: *
  246:       IF( LSAME( UPLO, 'U' ) ) THEN
  247: *
  248: *        Factorize the trailing columns of A using the upper triangle
  249: *        of A and working backwards, and compute the matrix W = U12*D
  250: *        for use in updating A11 (note that conjg(W) is actually stored)
  251: *
  252: *        K is the main loop index, decreasing from N in steps of 1 or 2
  253: *
  254:          K = N
  255:    10    CONTINUE
  256: *
  257: *        KW is the column of W which corresponds to column K of A
  258: *
  259:          KW = NB + K - N
  260: *
  261: *        Exit from loop
  262: *
  263:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  264:      $      GO TO 30
  265: *
  266:          KSTEP = 1
  267:          P = K
  268: *
  269: *        Copy column K of A to column KW of W and update it
  270: *
  271:          IF( K.GT.1 )
  272:      $      CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
  273:          W( K, KW ) = DBLE( A( K, K ) )
  274:          IF( K.LT.N ) THEN
  275:             CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  276:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  277:             W( K, KW ) = DBLE( W( K, KW ) )
  278:          END IF
  279: *
  280: *        Determine rows and columns to be interchanged and whether
  281: *        a 1-by-1 or 2-by-2 pivot block will be used
  282: *
  283:          ABSAKK = ABS( DBLE( W( K, KW ) ) )
  284: *
  285: *        IMAX is the row-index of the largest off-diagonal element in
  286: *        column K, and COLMAX is its absolute value.
  287: *        Determine both COLMAX and IMAX.
  288: *
  289:          IF( K.GT.1 ) THEN
  290:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  291:             COLMAX = CABS1( W( IMAX, KW ) )
  292:          ELSE
  293:             COLMAX = ZERO
  294:          END IF
  295: *
  296:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  297: *
  298: *           Column K is zero or underflow: set INFO and continue
  299: *
  300:             IF( INFO.EQ.0 )
  301:      $         INFO = K
  302:             KP = K
  303:             A( K, K ) = DBLE( W( K, KW ) )
  304:             IF( K.GT.1 )
  305:      $         CALL ZCOPY( K-1, W( 1, KW ), 1, A( 1, K ), 1 )
  306:          ELSE
  307: *
  308: *           ============================================================
  309: *
  310: *           BEGIN pivot search
  311: *
  312: *           Case(1)
  313: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  314: *           (used to handle NaN and Inf)
  315:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  316: *
  317: *              no interchange, use 1-by-1 pivot block
  318: *
  319:                KP = K
  320: *
  321:             ELSE
  322: *
  323: *              Lop until pivot found
  324: *
  325:                DONE = .FALSE.
  326: *
  327:    12          CONTINUE
  328: *
  329: *                 BEGIN pivot search loop body
  330: *
  331: *
  332: *                 Copy column IMAX to column KW-1 of W and update it
  333: *
  334:                   IF( IMAX.GT.1 )
  335:      $               CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
  336:      $                           1 )
  337:                   W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
  338: *
  339:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  340:      $                        W( IMAX+1, KW-1 ), 1 )
  341:                   CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  342: *
  343:                   IF( K.LT.N ) THEN
  344:                      CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  345:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  346:      $                           CONE, W( 1, KW-1 ), 1 )
  347:                      W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
  348:                   END IF
  349: *
  350: *                 JMAX is the column-index of the largest off-diagonal
  351: *                 element in row IMAX, and ROWMAX is its absolute value.
  352: *                 Determine both ROWMAX and JMAX.
  353: *
  354:                   IF( IMAX.NE.K ) THEN
  355:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  356:      $                                     1 )
  357:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
  358:                   ELSE
  359:                      ROWMAX = ZERO
  360:                   END IF
  361: *
  362:                   IF( IMAX.GT.1 ) THEN
  363:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  364:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
  365:                      IF( DTEMP.GT.ROWMAX ) THEN
  366:                         ROWMAX = DTEMP
  367:                         JMAX = ITEMP
  368:                      END IF
  369:                   END IF
  370: *
  371: *                 Case(2)
  372: *                 Equivalent to testing for
  373: *                 ABS( DBLE( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
  374: *                 (used to handle NaN and Inf)
  375: *
  376:                   IF( .NOT.( ABS( DBLE( W( IMAX,KW-1 ) ) )
  377:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  378: *
  379: *                    interchange rows and columns K and IMAX,
  380: *                    use 1-by-1 pivot block
  381: *
  382:                      KP = IMAX
  383: *
  384: *                    copy column KW-1 of W to column KW of W
  385: *
  386:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  387: *
  388:                      DONE = .TRUE.
  389: *
  390: *                 Case(3)
  391: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  392: *                 (used to handle NaN and Inf)
  393: *
  394:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  395:      $            THEN
  396: *
  397: *                    interchange rows and columns K-1 and IMAX,
  398: *                    use 2-by-2 pivot block
  399: *
  400:                      KP = IMAX
  401:                      KSTEP = 2
  402:                      DONE = .TRUE.
  403: *
  404: *                 Case(4)
  405:                   ELSE
  406: *
  407: *                    Pivot not found: set params and repeat
  408: *
  409:                      P = IMAX
  410:                      COLMAX = ROWMAX
  411:                      IMAX = JMAX
  412: *
  413: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  414: *
  415:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  416: *
  417:                   END IF
  418: *
  419: *
  420: *                 END pivot search loop body
  421: *
  422:                IF( .NOT.DONE ) GOTO 12
  423: *
  424:             END IF
  425: *
  426: *           END pivot search
  427: *
  428: *           ============================================================
  429: *
  430: *           KK is the column of A where pivoting step stopped
  431: *
  432:             KK = K - KSTEP + 1
  433: *
  434: *           KKW is the column of W which corresponds to column KK of A
  435: *
  436:             KKW = NB + KK - N
  437: *
  438: *           Interchange rows and columns P and K.
  439: *           Updated column P is already stored in column KW of W.
  440: *
  441:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  442: *
  443: *              Copy non-updated column K to column P of submatrix A
  444: *              at step K. No need to copy element into columns
  445: *              K and K-1 of A for 2-by-2 pivot, since these columns
  446: *              will be later overwritten.
  447: *
  448:                A( P, P ) = DBLE( A( K, K ) )
  449:                CALL ZCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
  450:      $                     LDA )
  451:                CALL ZLACGV( K-1-P, A( P, P+1 ), LDA )
  452:                IF( P.GT.1 )
  453:      $            CALL ZCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  454: *
  455: *              Interchange rows K and P in the last K+1 to N columns of A
  456: *              (columns K and K-1 of A for 2-by-2 pivot will be
  457: *              later overwritten). Interchange rows K and P
  458: *              in last KKW to NB columns of W.
  459: *
  460:                IF( K.LT.N )
  461:      $            CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
  462:      $                        LDA )
  463:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ),
  464:      $                     LDW )
  465:             END IF
  466: *
  467: *           Interchange rows and columns KP and KK.
  468: *           Updated column KP is already stored in column KKW of W.
  469: *
  470:             IF( KP.NE.KK ) THEN
  471: *
  472: *              Copy non-updated column KK to column KP of submatrix A
  473: *              at step K. No need to copy element into column K
  474: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  475: *              will be later overwritten.
  476: *
  477:                A( KP, KP ) = DBLE( A( KK, KK ) )
  478:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  479:      $                     LDA )
  480:                CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
  481:                IF( KP.GT.1 )
  482:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  483: *
  484: *              Interchange rows KK and KP in last K+1 to N columns of A
  485: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  486: *              later overwritten). Interchange rows KK and KP
  487: *              in last KKW to NB columns of W.
  488: *
  489:                IF( K.LT.N )
  490:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  491:      $                        LDA )
  492:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  493:      $                     LDW )
  494:             END IF
  495: *
  496:             IF( KSTEP.EQ.1 ) THEN
  497: *
  498: *              1-by-1 pivot block D(k): column kw of W now holds
  499: *
  500: *              W(kw) = U(k)*D(k),
  501: *
  502: *              where U(k) is the k-th column of U
  503: *
  504: *              (1) Store subdiag. elements of column U(k)
  505: *              and 1-by-1 block D(k) in column k of A.
  506: *              (NOTE: Diagonal element U(k,k) is a UNIT element
  507: *              and not stored)
  508: *                 A(k,k) := D(k,k) = W(k,kw)
  509: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  510: *
  511: *              (NOTE: No need to use for Hermitian matrix
  512: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
  513: *              element D(k,k) from W (potentially saves only one load))
  514:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  515:                IF( K.GT.1 ) THEN
  516: *
  517: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  518: *                  since that was ensured earlier in pivot search:
  519: *                  case A(k,k) = 0 falls into 2x2 pivot case(3))
  520: *
  521: *                 Handle division by a small number
  522: *
  523:                   T = DBLE( A( K, K ) )
  524:                   IF( ABS( T ).GE.SFMIN ) THEN
  525:                      R1 = ONE / T
  526:                      CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  527:                   ELSE
  528:                      DO 14 II = 1, K-1
  529:                         A( II, K ) = A( II, K ) / T
  530:    14                CONTINUE
  531:                   END IF
  532: *
  533: *                 (2) Conjugate column W(kw)
  534: *
  535:                   CALL ZLACGV( K-1, W( 1, KW ), 1 )
  536:                END IF
  537: *
  538:             ELSE
  539: *
  540: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  541: *
  542: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  543: *
  544: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  545: *              of U
  546: *
  547: *              (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  548: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  549: *              (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  550: *              block and not stored)
  551: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  552: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  553: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  554: *
  555:                IF( K.GT.2 ) THEN
  556: *
  557: *                 Factor out the columns of the inverse of 2-by-2 pivot
  558: *                 block D, so that each column contains 1, to reduce the
  559: *                 number of FLOPS when we multiply panel
  560: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
  561: *
  562: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
  563: *                           ( d21    d22 )
  564: *
  565: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
  566: *                                          ( (-d21) (     d11 ) )
  567: *
  568: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
  569: *
  570: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
  571: *                     (     (      -1 )           ( d11/conj(d21) ) )
  572: *
  573: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
  574: *
  575: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  576: *                     (     (  -1 )           ( D22 ) )
  577: *
  578: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  579: *                                      (     (  -1 )           ( D22 ) )
  580: *
  581: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
  582: *                   (               (  -1 )         ( D22 ) )
  583: *
  584: *                 Handle division by a small number. (NOTE: order of
  585: *                 operations is important)
  586: *
  587: *                 = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
  588: *                   (   ((  -1 )          )   (( D22 )     ) ),
  589: *
  590: *                 where D11 = d22/d21,
  591: *                       D22 = d11/conj(d21),
  592: *                       D21 = d21,
  593: *                       T = 1/(D22*D11-1).
  594: *
  595: *                 (NOTE: No need to check for division by ZERO,
  596: *                  since that was ensured earlier in pivot search:
  597: *                  (a) d21 != 0 in 2x2 pivot case(4),
  598: *                      since |d21| should be larger than |d11| and |d22|;
  599: *                  (b) (D22*D11 - 1) != 0, since from (a),
  600: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
  601: *
  602:                   D21 = W( K-1, KW )
  603:                   D11 = W( K, KW ) / DCONJG( D21 )
  604:                   D22 = W( K-1, KW-1 ) / D21
  605:                   T = ONE / ( DBLE( D11*D22 )-ONE )
  606: *
  607: *                 Update elements in columns A(k-1) and A(k) as
  608: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  609: *                 of D**(-1)
  610: *
  611:                   DO 20 J = 1, K - 2
  612:                      A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
  613:      $                             D21 )
  614:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  615:      $                           DCONJG( D21 ) )
  616:    20             CONTINUE
  617:                END IF
  618: *
  619: *              Copy D(k) to A
  620: *
  621:                A( K-1, K-1 ) = W( K-1, KW-1 )
  622:                A( K-1, K ) = W( K-1, KW )
  623:                A( K, K ) = W( K, KW )
  624: *
  625: *              (2) Conjugate columns W(kw) and W(kw-1)
  626: *
  627:                CALL ZLACGV( K-1, W( 1, KW ), 1 )
  628:                CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
  629: *
  630:             END IF
  631: *
  632:          END IF
  633: *
  634: *        Store details of the interchanges in IPIV
  635: *
  636:          IF( KSTEP.EQ.1 ) THEN
  637:             IPIV( K ) = KP
  638:          ELSE
  639:             IPIV( K ) = -P
  640:             IPIV( K-1 ) = -KP
  641:          END IF
  642: *
  643: *        Decrease K and return to the start of the main loop
  644: *
  645:          K = K - KSTEP
  646:          GO TO 10
  647: *
  648:    30    CONTINUE
  649: *
  650: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  651: *
  652: *        A11 := A11 - U12*D*U12**H = A11 - U12*W**H
  653: *
  654: *        computing blocks of NB columns at a time (note that conjg(W) is
  655: *        actually stored)
  656: *
  657:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  658:             JB = MIN( NB, K-J+1 )
  659: *
  660: *           Update the upper triangle of the diagonal block
  661: *
  662:             DO 40 JJ = J, J + JB - 1
  663:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  664:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  665:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  666:      $                     A( J, JJ ), 1 )
  667:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  668:    40       CONTINUE
  669: *
  670: *           Update the rectangular superdiagonal block
  671: *
  672:             IF( J.GE.2 )
  673:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  674:      $                     -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  675:      $                     CONE, A( 1, J ), LDA )
  676:    50    CONTINUE
  677: *
  678: *        Put U12 in standard form by partially undoing the interchanges
  679: *        in of rows in columns k+1:n looping backwards from k+1 to n
  680: *
  681:          J = K + 1
  682:    60    CONTINUE
  683: *
  684: *           Undo the interchanges (if any) of rows J and JP2
  685: *           (or J and JP2, and J+1 and JP1) at each step J
  686: *
  687:             KSTEP = 1
  688:             JP1 = 1
  689: *           (Here, J is a diagonal index)
  690:             JJ = J
  691:             JP2 = IPIV( J )
  692:             IF( JP2.LT.0 ) THEN
  693:                JP2 = -JP2
  694: *              (Here, J is a diagonal index)
  695:                J = J + 1
  696:                JP1 = -IPIV( J )
  697:                KSTEP = 2
  698:             END IF
  699: *           (NOTE: Here, J is used to determine row length. Length N-J+1
  700: *           of the rows to swap back doesn't include diagonal element)
  701:             J = J + 1
  702:             IF( JP2.NE.JJ .AND. J.LE.N )
  703:      $         CALL ZSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
  704:             JJ = JJ + 1
  705:             IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.LE.N )
  706:      $         CALL ZSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
  707:          IF( J.LT.N )
  708:      $      GO TO 60
  709: *
  710: *        Set KB to the number of columns factorized
  711: *
  712:          KB = N - K
  713: *
  714:       ELSE
  715: *
  716: *        Factorize the leading columns of A using the lower triangle
  717: *        of A and working forwards, and compute the matrix W = L21*D
  718: *        for use in updating A22 (note that conjg(W) is actually stored)
  719: *
  720: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  721: *
  722:          K = 1
  723:    70    CONTINUE
  724: *
  725: *        Exit from loop
  726: *
  727:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  728:      $      GO TO 90
  729: *
  730:          KSTEP = 1
  731:          P = K
  732: *
  733: *        Copy column K of A to column K of W and update column K of W
  734: *
  735:          W( K, K ) = DBLE( A( K, K ) )
  736:          IF( K.LT.N )
  737:      $      CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
  738:          IF( K.GT.1 ) THEN
  739:             CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  740:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  741:             W( K, K ) = DBLE( W( K, K ) )
  742:          END IF
  743: *
  744: *        Determine rows and columns to be interchanged and whether
  745: *        a 1-by-1 or 2-by-2 pivot block will be used
  746: *
  747:          ABSAKK = ABS( DBLE( W( K, K ) ) )
  748: *
  749: *        IMAX is the row-index of the largest off-diagonal element in
  750: *        column K, and COLMAX is its absolute value.
  751: *        Determine both COLMAX and IMAX.
  752: *
  753:          IF( K.LT.N ) THEN
  754:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  755:             COLMAX = CABS1( W( IMAX, K ) )
  756:          ELSE
  757:             COLMAX = ZERO
  758:          END IF
  759: *
  760:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  761: *
  762: *           Column K is zero or underflow: set INFO and continue
  763: *
  764:             IF( INFO.EQ.0 )
  765:      $         INFO = K
  766:             KP = K
  767:             A( K, K ) = DBLE( W( K, K ) )
  768:             IF( K.LT.N )
  769:      $         CALL ZCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
  770:          ELSE
  771: *
  772: *           ============================================================
  773: *
  774: *           BEGIN pivot search
  775: *
  776: *           Case(1)
  777: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  778: *           (used to handle NaN and Inf)
  779: *
  780:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  781: *
  782: *              no interchange, use 1-by-1 pivot block
  783: *
  784:                KP = K
  785: *
  786:             ELSE
  787: *
  788:                DONE = .FALSE.
  789: *
  790: *              Loop until pivot found
  791: *
  792:    72          CONTINUE
  793: *
  794: *                 BEGIN pivot search loop body
  795: *
  796: *
  797: *                 Copy column IMAX to column k+1 of W and update it
  798: *
  799:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  800:                   CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
  801:                   W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
  802: *
  803:                   IF( IMAX.LT.N )
  804:      $               CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
  805:      $                           W( IMAX+1, K+1 ), 1 )
  806: *
  807:                   IF( K.GT.1 ) THEN
  808:                      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  809:      $                            A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  810:      $                            CONE, W( K, K+1 ), 1 )
  811:                      W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
  812:                   END IF
  813: *
  814: *                 JMAX is the column-index of the largest off-diagonal
  815: *                 element in row IMAX, and ROWMAX is its absolute value.
  816: *                 Determine both ROWMAX and JMAX.
  817: *
  818:                   IF( IMAX.NE.K ) THEN
  819:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  820:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
  821:                   ELSE
  822:                      ROWMAX = ZERO
  823:                   END IF
  824: *
  825:                   IF( IMAX.LT.N ) THEN
  826:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  827:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
  828:                      IF( DTEMP.GT.ROWMAX ) THEN
  829:                         ROWMAX = DTEMP
  830:                         JMAX = ITEMP
  831:                      END IF
  832:                   END IF
  833: *
  834: *                 Case(2)
  835: *                 Equivalent to testing for
  836: *                 ABS( DBLE( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
  837: *                 (used to handle NaN and Inf)
  838: *
  839:                   IF( .NOT.( ABS( DBLE( W( IMAX,K+1 ) ) )
  840:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  841: *
  842: *                    interchange rows and columns K and IMAX,
  843: *                    use 1-by-1 pivot block
  844: *
  845:                      KP = IMAX
  846: *
  847: *                    copy column K+1 of W to column K of W
  848: *
  849:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  850: *
  851:                      DONE = .TRUE.
  852: *
  853: *                 Case(3)
  854: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  855: *                 (used to handle NaN and Inf)
  856: *
  857:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  858:      $            THEN
  859: *
  860: *                    interchange rows and columns K+1 and IMAX,
  861: *                    use 2-by-2 pivot block
  862: *
  863:                      KP = IMAX
  864:                      KSTEP = 2
  865:                      DONE = .TRUE.
  866: *
  867: *                 Case(4)
  868:                   ELSE
  869: *
  870: *                    Pivot not found: set params and repeat
  871: *
  872:                      P = IMAX
  873:                      COLMAX = ROWMAX
  874:                      IMAX = JMAX
  875: *
  876: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  877: *
  878:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  879: *
  880:                   END IF
  881: *
  882: *
  883: *                 End pivot search loop body
  884: *
  885:                IF( .NOT.DONE ) GOTO 72
  886: *
  887:             END IF
  888: *
  889: *           END pivot search
  890: *
  891: *           ============================================================
  892: *
  893: *           KK is the column of A where pivoting step stopped
  894: *
  895:             KK = K + KSTEP - 1
  896: *
  897: *           Interchange rows and columns P and K (only for 2-by-2 pivot).
  898: *           Updated column P is already stored in column K of W.
  899: *
  900:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  901: *
  902: *              Copy non-updated column KK-1 to column P of submatrix A
  903: *              at step K. No need to copy element into columns
  904: *              K and K+1 of A for 2-by-2 pivot, since these columns
  905: *              will be later overwritten.
  906: *
  907:                A( P, P ) = DBLE( A( K, K ) )
  908:                CALL ZCOPY( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  909:                CALL ZLACGV( P-K-1, A( P, K+1 ), LDA )
  910:                IF( P.LT.N )
  911:      $            CALL ZCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  912: *
  913: *              Interchange rows K and P in first K-1 columns of A
  914: *              (columns K and K+1 of A for 2-by-2 pivot will be
  915: *              later overwritten). Interchange rows K and P
  916: *              in first KK columns of W.
  917: *
  918:                IF( K.GT.1 )
  919:      $            CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
  920:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  921:             END IF
  922: *
  923: *           Interchange rows and columns KP and KK.
  924: *           Updated column KP is already stored in column KK of W.
  925: *
  926:             IF( KP.NE.KK ) THEN
  927: *
  928: *              Copy non-updated column KK to column KP of submatrix A
  929: *              at step K. No need to copy element into column K
  930: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
  931: *              will be later overwritten.
  932: *
  933:                A( KP, KP ) = DBLE( A( KK, KK ) )
  934:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  935:      $                     LDA )
  936:                CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
  937:                IF( KP.LT.N )
  938:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  939: *
  940: *              Interchange rows KK and KP in first K-1 columns of A
  941: *              (column K (or K and K+1 for 2-by-2 pivot) of A will be
  942: *              later overwritten). Interchange rows KK and KP
  943: *              in first KK columns of W.
  944: *
  945:                IF( K.GT.1 )
  946:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  947:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  948:             END IF
  949: *
  950:             IF( KSTEP.EQ.1 ) THEN
  951: *
  952: *              1-by-1 pivot block D(k): column k of W now holds
  953: *
  954: *              W(k) = L(k)*D(k),
  955: *
  956: *              where L(k) is the k-th column of L
  957: *
  958: *              (1) Store subdiag. elements of column L(k)
  959: *              and 1-by-1 block D(k) in column k of A.
  960: *              (NOTE: Diagonal element L(k,k) is a UNIT element
  961: *              and not stored)
  962: *                 A(k,k) := D(k,k) = W(k,k)
  963: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
  964: *
  965: *              (NOTE: No need to use for Hermitian matrix
  966: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
  967: *              element D(k,k) from W (potentially saves only one load))
  968:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  969:                IF( K.LT.N ) THEN
  970: *
  971: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  972: *                  since that was ensured earlier in pivot search:
  973: *                  case A(k,k) = 0 falls into 2x2 pivot case(3))
  974: *
  975: *                 Handle division by a small number
  976: *
  977:                   T = DBLE( A( K, K ) )
  978:                   IF( ABS( T ).GE.SFMIN ) THEN
  979:                      R1 = ONE / T
  980:                      CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  981:                   ELSE
  982:                      DO 74 II = K + 1, N
  983:                         A( II, K ) = A( II, K ) / T
  984:    74                CONTINUE
  985:                   END IF
  986: *
  987: *                 (2) Conjugate column W(k)
  988: *
  989:                   CALL ZLACGV( N-K, W( K+1, K ), 1 )
  990:                END IF
  991: *
  992:             ELSE
  993: *
  994: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  995: *
  996: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  997: *
  998: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  999: *              of L
 1000: *
 1001: *              (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
 1002: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
 1003: *              NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
 1004: *              block and not stored.
 1005: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
 1006: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
 1007: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
 1008: *
 1009:                IF( K.LT.N-1 ) THEN
 1010: *
 1011: *                 Factor out the columns of the inverse of 2-by-2 pivot
 1012: *                 block D, so that each column contains 1, to reduce the
 1013: *                 number of FLOPS when we multiply panel
 1014: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
 1015: *
 1016: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
 1017: *                           ( d21    d22 )
 1018: *
 1019: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
 1020: *                                          ( (-d21) (     d11 ) )
 1021: *
 1022: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
 1023: *
 1024: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
 1025: *                     (     (      -1 )           ( d11/conj(d21) ) )
 1026: *
 1027: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
 1028: *
 1029: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
 1030: *                     (     (  -1 )           ( D22 ) )
 1031: *
 1032: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
 1033: *                                      (     (  -1 )           ( D22 ) )
 1034: *
 1035: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
 1036: *                   (               (  -1 )         ( D22 ) )
 1037: *
 1038: *                 Handle division by a small number. (NOTE: order of
 1039: *                 operations is important)
 1040: *
 1041: *                 = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
 1042: *                   (   ((  -1 )          )   (( D22 )     ) ),
 1043: *
 1044: *                 where D11 = d22/d21,
 1045: *                       D22 = d11/conj(d21),
 1046: *                       D21 = d21,
 1047: *                       T = 1/(D22*D11-1).
 1048: *
 1049: *                 (NOTE: No need to check for division by ZERO,
 1050: *                  since that was ensured earlier in pivot search:
 1051: *                  (a) d21 != 0 in 2x2 pivot case(4),
 1052: *                      since |d21| should be larger than |d11| and |d22|;
 1053: *                  (b) (D22*D11 - 1) != 0, since from (a),
 1054: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
 1055: *
 1056:                   D21 = W( K+1, K )
 1057:                   D11 = W( K+1, K+1 ) / D21
 1058:                   D22 = W( K, K ) / DCONJG( D21 )
 1059:                   T = ONE / ( DBLE( D11*D22 )-ONE )
 1060: *
 1061: *                 Update elements in columns A(k) and A(k+1) as
 1062: *                 dot products of rows of ( W(k) W(k+1) ) and columns
 1063: *                 of D**(-1)
 1064: *
 1065:                   DO 80 J = K + 2, N
 1066:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
 1067:      $                           DCONJG( D21 ) )
 1068:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
 1069:      $                             D21 )
 1070:    80             CONTINUE
 1071:                END IF
 1072: *
 1073: *              Copy D(k) to A
 1074: *
 1075:                A( K, K ) = W( K, K )
 1076:                A( K+1, K ) = W( K+1, K )
 1077:                A( K+1, K+1 ) = W( K+1, K+1 )
 1078: *
 1079: *              (2) Conjugate columns W(k) and W(k+1)
 1080: *
 1081:                CALL ZLACGV( N-K, W( K+1, K ), 1 )
 1082:                CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
 1083: *
 1084:             END IF
 1085: *
 1086:          END IF
 1087: *
 1088: *        Store details of the interchanges in IPIV
 1089: *
 1090:          IF( KSTEP.EQ.1 ) THEN
 1091:             IPIV( K ) = KP
 1092:          ELSE
 1093:             IPIV( K ) = -P
 1094:             IPIV( K+1 ) = -KP
 1095:          END IF
 1096: *
 1097: *        Increase K and return to the start of the main loop
 1098: *
 1099:          K = K + KSTEP
 1100:          GO TO 70
 1101: *
 1102:    90    CONTINUE
 1103: *
 1104: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
 1105: *
 1106: *        A22 := A22 - L21*D*L21**H = A22 - L21*W**H
 1107: *
 1108: *        computing blocks of NB columns at a time (note that conjg(W) is
 1109: *        actually stored)
 1110: *
 1111:          DO 110 J = K, N, NB
 1112:             JB = MIN( NB, N-J+1 )
 1113: *
 1114: *           Update the lower triangle of the diagonal block
 1115: *
 1116:             DO 100 JJ = J, J + JB - 1
 1117:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
 1118:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
 1119:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
 1120:      $                     A( JJ, JJ ), 1 )
 1121:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
 1122:   100       CONTINUE
 1123: *
 1124: *           Update the rectangular subdiagonal block
 1125: *
 1126:             IF( J+JB.LE.N )
 1127:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 1128:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
 1129:      $                     LDW, CONE, A( J+JB, J ), LDA )
 1130:   110    CONTINUE
 1131: *
 1132: *        Put L21 in standard form by partially undoing the interchanges
 1133: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
 1134: *
 1135:          J = K - 1
 1136:   120    CONTINUE
 1137: *
 1138: *           Undo the interchanges (if any) of rows J and JP2
 1139: *           (or J and JP2, and J-1 and JP1) at each step J
 1140: *
 1141:             KSTEP = 1
 1142:             JP1 = 1
 1143: *           (Here, J is a diagonal index)
 1144:             JJ = J
 1145:             JP2 = IPIV( J )
 1146:             IF( JP2.LT.0 ) THEN
 1147:                JP2 = -JP2
 1148: *              (Here, J is a diagonal index)
 1149:                J = J - 1
 1150:                JP1 = -IPIV( J )
 1151:                KSTEP = 2
 1152:             END IF
 1153: *           (NOTE: Here, J is used to determine row length. Length J
 1154: *           of the rows to swap back doesn't include diagonal element)
 1155:             J = J - 1
 1156:             IF( JP2.NE.JJ .AND. J.GE.1 )
 1157:      $         CALL ZSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
 1158:             JJ = JJ -1
 1159:             IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.GE.1 )
 1160:      $         CALL ZSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
 1161:          IF( J.GT.1 )
 1162:      $      GO TO 120
 1163: *
 1164: *        Set KB to the number of columns factorized
 1165: *
 1166:          KB = K - 1
 1167: *
 1168:       END IF
 1169:       RETURN
 1170: *
 1171: *     End of ZLAHEF_ROOK
 1172: *
 1173:       END

CVSweb interface <joel.bertrand@systella.fr>