File:  [local] / rpl / lapack / lapack / zlahef_rook.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:37 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: * \brief \b ZLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAHEF_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLAHEF_ROOK computes a partial factorization of a complex Hermitian
   39: *> matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting
   40: *> method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0      I     )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *> Note that U**H denotes the conjugate transpose of U.
   51: *>
   52: *> ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses
   53: *> blocked code (calling Level 3 BLAS) to update the submatrix
   54: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] UPLO
   61: *> \verbatim
   62: *>          UPLO is CHARACTER*1
   63: *>          Specifies whether the upper or lower triangular part of the
   64: *>          Hermitian matrix A is stored:
   65: *>          = 'U':  Upper triangular
   66: *>          = 'L':  Lower triangular
   67: *> \endverbatim
   68: *>
   69: *> \param[in] N
   70: *> \verbatim
   71: *>          N is INTEGER
   72: *>          The order of the matrix A.  N >= 0.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] NB
   76: *> \verbatim
   77: *>          NB is INTEGER
   78: *>          The maximum number of columns of the matrix A that should be
   79: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   80: *>          blocks.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] KB
   84: *> \verbatim
   85: *>          KB is INTEGER
   86: *>          The number of columns of A that were actually factored.
   87: *>          KB is either NB-1 or NB, or N if N <= NB.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] A
   91: *> \verbatim
   92: *>          A is COMPLEX*16 array, dimension (LDA,N)
   93: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   94: *>          n-by-n upper triangular part of A contains the upper
   95: *>          triangular part of the matrix A, and the strictly lower
   96: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   97: *>          leading n-by-n lower triangular part of A contains the lower
   98: *>          triangular part of the matrix A, and the strictly upper
   99: *>          triangular part of A is not referenced.
  100: *>          On exit, A contains details of the partial factorization.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] IPIV
  110: *> \verbatim
  111: *>          IPIV is INTEGER array, dimension (N)
  112: *>          Details of the interchanges and the block structure of D.
  113: *>
  114: *>          If UPLO = 'U':
  115: *>             Only the last KB elements of IPIV are set.
  116: *>
  117: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  118: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  119: *>
  120: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  121: *>             columns k and -IPIV(k) were interchanged and rows and
  122: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  123: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  124: *>
  125: *>          If UPLO = 'L':
  126: *>             Only the first KB elements of IPIV are set.
  127: *>
  128: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  129: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  130: *>
  131: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  132: *>             columns k and -IPIV(k) were interchanged and rows and
  133: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  134: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] W
  138: *> \verbatim
  139: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LDW
  143: *> \verbatim
  144: *>          LDW is INTEGER
  145: *>          The leading dimension of the array W.  LDW >= max(1,N).
  146: *> \endverbatim
  147: *>
  148: *> \param[out] INFO
  149: *> \verbatim
  150: *>          INFO is INTEGER
  151: *>          = 0: successful exit
  152: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  153: *>               has been completed, but the block diagonal matrix D is
  154: *>               exactly singular.
  155: *> \endverbatim
  156: *
  157: *  Authors:
  158: *  ========
  159: *
  160: *> \author Univ. of Tennessee
  161: *> \author Univ. of California Berkeley
  162: *> \author Univ. of Colorado Denver
  163: *> \author NAG Ltd.
  164: *
  165: *> \date November 2013
  166: *
  167: *> \ingroup complex16HEcomputational
  168: *
  169: *> \par Contributors:
  170: *  ==================
  171: *>
  172: *> \verbatim
  173: *>
  174: *>  November 2013,  Igor Kozachenko,
  175: *>                  Computer Science Division,
  176: *>                  University of California, Berkeley
  177: *>
  178: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  179: *>                  School of Mathematics,
  180: *>                  University of Manchester
  181: *> \endverbatim
  182: *
  183: *  =====================================================================
  184:       SUBROUTINE ZLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
  185:      $                        INFO )
  186: *
  187: *  -- LAPACK computational routine (version 3.5.0) --
  188: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  189: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190: *     November 2013
  191: *
  192: *     .. Scalar Arguments ..
  193:       CHARACTER          UPLO
  194:       INTEGER            INFO, KB, LDA, LDW, N, NB
  195: *     ..
  196: *     .. Array Arguments ..
  197:       INTEGER            IPIV( * )
  198:       COMPLEX*16         A( LDA, * ), W( LDW, * )
  199: *     ..
  200: *
  201: *  =====================================================================
  202: *
  203: *     .. Parameters ..
  204:       DOUBLE PRECISION   ZERO, ONE
  205:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  206:       COMPLEX*16         CONE
  207:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  208:       DOUBLE PRECISION   EIGHT, SEVTEN
  209:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  210: *     ..
  211: *     .. Local Scalars ..
  212:       LOGICAL            DONE
  213:       INTEGER            IMAX, ITEMP, II, J, JB, JJ, JMAX, JP1, JP2, K,
  214:      $                   KK, KKW, KP, KSTEP, KW, P
  215:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, DTEMP, R1, ROWMAX, T,
  216:      $                   SFMIN
  217:       COMPLEX*16         D11, D21, D22, Z
  218: *     ..
  219: *     .. External Functions ..
  220:       LOGICAL            LSAME
  221:       INTEGER            IZAMAX
  222:       DOUBLE PRECISION   DLAMCH
  223:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  224: *     ..
  225: *     .. External Subroutines ..
  226:       EXTERNAL           ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
  227: *     ..
  228: *     .. Intrinsic Functions ..
  229:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
  230: *     ..
  231: *     .. Statement Functions ..
  232:       DOUBLE PRECISION   CABS1
  233: *     ..
  234: *     .. Statement Function definitions ..
  235:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  236: *     ..
  237: *     .. Executable Statements ..
  238: *
  239:       INFO = 0
  240: *
  241: *     Initialize ALPHA for use in choosing pivot block size.
  242: *
  243:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  244: *
  245: *     Compute machine safe minimum
  246: *
  247:       SFMIN = DLAMCH( 'S' )
  248: *
  249:       IF( LSAME( UPLO, 'U' ) ) THEN
  250: *
  251: *        Factorize the trailing columns of A using the upper triangle
  252: *        of A and working backwards, and compute the matrix W = U12*D
  253: *        for use in updating A11 (note that conjg(W) is actually stored)
  254: *
  255: *        K is the main loop index, decreasing from N in steps of 1 or 2
  256: *
  257:          K = N
  258:    10    CONTINUE
  259: *
  260: *        KW is the column of W which corresponds to column K of A
  261: *
  262:          KW = NB + K - N
  263: *
  264: *        Exit from loop
  265: *
  266:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  267:      $      GO TO 30
  268: *
  269:          KSTEP = 1
  270:          P = K
  271: *
  272: *        Copy column K of A to column KW of W and update it
  273: *
  274:          IF( K.GT.1 )
  275:      $      CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
  276:          W( K, KW ) = DBLE( A( K, K ) )
  277:          IF( K.LT.N ) THEN
  278:             CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  279:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  280:             W( K, KW ) = DBLE( W( K, KW ) )
  281:          END IF
  282: *
  283: *        Determine rows and columns to be interchanged and whether
  284: *        a 1-by-1 or 2-by-2 pivot block will be used
  285: *
  286:          ABSAKK = ABS( DBLE( W( K, KW ) ) )
  287: *
  288: *        IMAX is the row-index of the largest off-diagonal element in
  289: *        column K, and COLMAX is its absolute value.
  290: *        Determine both COLMAX and IMAX.
  291: *
  292:          IF( K.GT.1 ) THEN
  293:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  294:             COLMAX = CABS1( W( IMAX, KW ) )
  295:          ELSE
  296:             COLMAX = ZERO
  297:          END IF
  298: *
  299:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  300: *
  301: *           Column K is zero or underflow: set INFO and continue
  302: *
  303:             IF( INFO.EQ.0 )
  304:      $         INFO = K
  305:             KP = K
  306:             A( K, K ) = DBLE( W( K, KW ) )
  307:             IF( K.GT.1 )
  308:      $         CALL ZCOPY( K-1, W( 1, KW ), 1, A( 1, K ), 1 )
  309:          ELSE
  310: *
  311: *           ============================================================
  312: *
  313: *           BEGIN pivot search
  314: *
  315: *           Case(1)
  316: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  317: *           (used to handle NaN and Inf)
  318:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  319: *
  320: *              no interchange, use 1-by-1 pivot block
  321: *
  322:                KP = K
  323: *
  324:             ELSE
  325: *
  326: *              Lop until pivot found
  327: *
  328:                DONE = .FALSE.
  329: *
  330:    12          CONTINUE
  331: *
  332: *                 BEGIN pivot search loop body
  333: *
  334: *
  335: *                 Copy column IMAX to column KW-1 of W and update it
  336: *
  337:                   IF( IMAX.GT.1 )
  338:      $               CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
  339:      $                           1 )
  340:                   W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
  341: *
  342:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  343:      $                        W( IMAX+1, KW-1 ), 1 )
  344:                   CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  345: *
  346:                   IF( K.LT.N ) THEN
  347:                      CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  348:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  349:      $                           CONE, W( 1, KW-1 ), 1 )
  350:                      W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
  351:                   END IF
  352: *
  353: *                 JMAX is the column-index of the largest off-diagonal
  354: *                 element in row IMAX, and ROWMAX is its absolute value.
  355: *                 Determine both ROWMAX and JMAX.
  356: *
  357:                   IF( IMAX.NE.K ) THEN
  358:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  359:      $                                     1 )
  360:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
  361:                   ELSE
  362:                      ROWMAX = ZERO
  363:                   END IF
  364: *
  365:                   IF( IMAX.GT.1 ) THEN
  366:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  367:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
  368:                      IF( DTEMP.GT.ROWMAX ) THEN
  369:                         ROWMAX = DTEMP
  370:                         JMAX = ITEMP
  371:                      END IF
  372:                   END IF
  373: *
  374: *                 Case(2)
  375: *                 Equivalent to testing for
  376: *                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
  377: *                 (used to handle NaN and Inf)
  378: *
  379:                   IF( .NOT.( ABS( DBLE( W( IMAX,KW-1 ) ) )
  380:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  381: *
  382: *                    interchange rows and columns K and IMAX,
  383: *                    use 1-by-1 pivot block
  384: *
  385:                      KP = IMAX
  386: *
  387: *                    copy column KW-1 of W to column KW of W
  388: *
  389:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  390: *
  391:                      DONE = .TRUE.
  392: *
  393: *                 Case(3)
  394: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  395: *                 (used to handle NaN and Inf)
  396: *
  397:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  398:      $            THEN
  399: *
  400: *                    interchange rows and columns K-1 and IMAX,
  401: *                    use 2-by-2 pivot block
  402: *
  403:                      KP = IMAX
  404:                      KSTEP = 2
  405:                      DONE = .TRUE.
  406: *
  407: *                 Case(4)
  408:                   ELSE
  409: *
  410: *                    Pivot not found: set params and repeat
  411: *
  412:                      P = IMAX
  413:                      COLMAX = ROWMAX
  414:                      IMAX = JMAX
  415: *
  416: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  417: *
  418:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  419: *
  420:                   END IF
  421: *
  422: *
  423: *                 END pivot search loop body
  424: *
  425:                IF( .NOT.DONE ) GOTO 12
  426: *
  427:             END IF
  428: *
  429: *           END pivot search
  430: *
  431: *           ============================================================
  432: *
  433: *           KK is the column of A where pivoting step stopped
  434: *
  435:             KK = K - KSTEP + 1
  436: *
  437: *           KKW is the column of W which corresponds to column KK of A
  438: *
  439:             KKW = NB + KK - N
  440: *
  441: *           Interchange rows and columns P and K.
  442: *           Updated column P is already stored in column KW of W.
  443: *
  444:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  445: *
  446: *              Copy non-updated column K to column P of submatrix A
  447: *              at step K. No need to copy element into columns
  448: *              K and K-1 of A for 2-by-2 pivot, since these columns
  449: *              will be later overwritten.
  450: *
  451:                A( P, P ) = DBLE( A( K, K ) )
  452:                CALL ZCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
  453:      $                     LDA )
  454:                CALL ZLACGV( K-1-P, A( P, P+1 ), LDA )
  455:                IF( P.GT.1 )
  456:      $            CALL ZCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  457: *
  458: *              Interchange rows K and P in the last K+1 to N columns of A
  459: *              (columns K and K-1 of A for 2-by-2 pivot will be
  460: *              later overwritten). Interchange rows K and P
  461: *              in last KKW to NB columns of W.
  462: *
  463:                IF( K.LT.N )
  464:      $            CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
  465:      $                        LDA )
  466:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ),
  467:      $                     LDW )
  468:             END IF
  469: *
  470: *           Interchange rows and columns KP and KK.
  471: *           Updated column KP is already stored in column KKW of W.
  472: *
  473:             IF( KP.NE.KK ) THEN
  474: *
  475: *              Copy non-updated column KK to column KP of submatrix A
  476: *              at step K. No need to copy element into column K
  477: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  478: *              will be later overwritten.
  479: *
  480:                A( KP, KP ) = DBLE( A( KK, KK ) )
  481:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  482:      $                     LDA )
  483:                CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
  484:                IF( KP.GT.1 )
  485:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  486: *
  487: *              Interchange rows KK and KP in last K+1 to N columns of A
  488: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  489: *              later overwritten). Interchange rows KK and KP
  490: *              in last KKW to NB columns of W.
  491: *
  492:                IF( K.LT.N )
  493:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  494:      $                        LDA )
  495:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  496:      $                     LDW )
  497:             END IF
  498: *
  499:             IF( KSTEP.EQ.1 ) THEN
  500: *
  501: *              1-by-1 pivot block D(k): column kw of W now holds
  502: *
  503: *              W(kw) = U(k)*D(k),
  504: *
  505: *              where U(k) is the k-th column of U
  506: *
  507: *              (1) Store subdiag. elements of column U(k)
  508: *              and 1-by-1 block D(k) in column k of A.
  509: *              (NOTE: Diagonal element U(k,k) is a UNIT element
  510: *              and not stored)
  511: *                 A(k,k) := D(k,k) = W(k,kw)
  512: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  513: *
  514: *              (NOTE: No need to use for Hermitian matrix
  515: *              A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
  516: *              element D(k,k) from W (potentially saves only one load))
  517:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  518:                IF( K.GT.1 ) THEN
  519: *
  520: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  521: *                  since that was ensured earlier in pivot search:
  522: *                  case A(k,k) = 0 falls into 2x2 pivot case(3))
  523: *
  524: *                 Handle division by a small number
  525: *
  526:                   T = DBLE( A( K, K ) )
  527:                   IF( ABS( T ).GE.SFMIN ) THEN
  528:                      R1 = ONE / T
  529:                      CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  530:                   ELSE
  531:                      DO 14 II = 1, K-1
  532:                         A( II, K ) = A( II, K ) / T
  533:    14                CONTINUE
  534:                   END IF
  535: *
  536: *                 (2) Conjugate column W(kw)
  537: *
  538:                   CALL ZLACGV( K-1, W( 1, KW ), 1 )
  539:                END IF
  540: *
  541:             ELSE
  542: *
  543: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  544: *
  545: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  546: *
  547: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  548: *              of U
  549: *
  550: *              (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  551: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  552: *              (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  553: *              block and not stored)
  554: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  555: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  556: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  557: *
  558:                IF( K.GT.2 ) THEN
  559: *
  560: *                 Factor out the columns of the inverse of 2-by-2 pivot
  561: *                 block D, so that each column contains 1, to reduce the
  562: *                 number of FLOPS when we multiply panel
  563: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
  564: *
  565: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
  566: *                           ( d21    d22 )
  567: *
  568: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
  569: *                                          ( (-d21) (     d11 ) )
  570: *
  571: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
  572: *
  573: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
  574: *                     (     (      -1 )           ( d11/conj(d21) ) )
  575: *
  576: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
  577: *
  578: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  579: *                     (     (  -1 )           ( D22 ) )
  580: *
  581: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  582: *                                      (     (  -1 )           ( D22 ) )
  583: *
  584: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
  585: *                   (               (  -1 )         ( D22 ) )
  586: *
  587: *                 Handle division by a small number. (NOTE: order of
  588: *                 operations is important)
  589: *
  590: *                 = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
  591: *                   (   ((  -1 )          )   (( D22 )     ) ),
  592: *
  593: *                 where D11 = d22/d21,
  594: *                       D22 = d11/conj(d21),
  595: *                       D21 = d21,
  596: *                       T = 1/(D22*D11-1).
  597: *
  598: *                 (NOTE: No need to check for division by ZERO,
  599: *                  since that was ensured earlier in pivot search:
  600: *                  (a) d21 != 0 in 2x2 pivot case(4),
  601: *                      since |d21| should be larger than |d11| and |d22|;
  602: *                  (b) (D22*D11 - 1) != 0, since from (a),
  603: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
  604: *
  605:                   D21 = W( K-1, KW )
  606:                   D11 = W( K, KW ) / DCONJG( D21 )
  607:                   D22 = W( K-1, KW-1 ) / D21
  608:                   T = ONE / ( DBLE( D11*D22 )-ONE )
  609: *
  610: *                 Update elements in columns A(k-1) and A(k) as
  611: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  612: *                 of D**(-1)
  613: *
  614:                   DO 20 J = 1, K - 2
  615:                      A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
  616:      $                             D21 )
  617:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  618:      $                           DCONJG( D21 ) )
  619:    20             CONTINUE
  620:                END IF
  621: *
  622: *              Copy D(k) to A
  623: *
  624:                A( K-1, K-1 ) = W( K-1, KW-1 )
  625:                A( K-1, K ) = W( K-1, KW )
  626:                A( K, K ) = W( K, KW )
  627: *
  628: *              (2) Conjugate columns W(kw) and W(kw-1)
  629: *
  630:                CALL ZLACGV( K-1, W( 1, KW ), 1 )
  631:                CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
  632: *
  633:             END IF
  634: *
  635:          END IF
  636: *
  637: *        Store details of the interchanges in IPIV
  638: *
  639:          IF( KSTEP.EQ.1 ) THEN
  640:             IPIV( K ) = KP
  641:          ELSE
  642:             IPIV( K ) = -P
  643:             IPIV( K-1 ) = -KP
  644:          END IF
  645: *
  646: *        Decrease K and return to the start of the main loop
  647: *
  648:          K = K - KSTEP
  649:          GO TO 10
  650: *
  651:    30    CONTINUE
  652: *
  653: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  654: *
  655: *        A11 := A11 - U12*D*U12**H = A11 - U12*W**H
  656: *
  657: *        computing blocks of NB columns at a time (note that conjg(W) is
  658: *        actually stored)
  659: *
  660:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  661:             JB = MIN( NB, K-J+1 )
  662: *
  663: *           Update the upper triangle of the diagonal block
  664: *
  665:             DO 40 JJ = J, J + JB - 1
  666:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  667:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  668:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  669:      $                     A( J, JJ ), 1 )
  670:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  671:    40       CONTINUE
  672: *
  673: *           Update the rectangular superdiagonal block
  674: *
  675:             IF( J.GE.2 )
  676:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  677:      $                     -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  678:      $                     CONE, A( 1, J ), LDA )
  679:    50    CONTINUE
  680: *
  681: *        Put U12 in standard form by partially undoing the interchanges
  682: *        in of rows in columns k+1:n looping backwards from k+1 to n
  683: *
  684:          J = K + 1
  685:    60    CONTINUE
  686: *
  687: *           Undo the interchanges (if any) of rows J and JP2
  688: *           (or J and JP2, and J+1 and JP1) at each step J
  689: *
  690:             KSTEP = 1
  691:             JP1 = 1
  692: *           (Here, J is a diagonal index)
  693:             JJ = J
  694:             JP2 = IPIV( J )
  695:             IF( JP2.LT.0 ) THEN
  696:                JP2 = -JP2
  697: *              (Here, J is a diagonal index)
  698:                J = J + 1
  699:                JP1 = -IPIV( J )
  700:                KSTEP = 2
  701:             END IF
  702: *           (NOTE: Here, J is used to determine row length. Length N-J+1
  703: *           of the rows to swap back doesn't include diagonal element)
  704:             J = J + 1
  705:             IF( JP2.NE.JJ .AND. J.LE.N )
  706:      $         CALL ZSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
  707:             JJ = JJ + 1
  708:             IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.LE.N )
  709:      $         CALL ZSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
  710:          IF( J.LT.N )
  711:      $      GO TO 60
  712: *
  713: *        Set KB to the number of columns factorized
  714: *
  715:          KB = N - K
  716: *
  717:       ELSE
  718: *
  719: *        Factorize the leading columns of A using the lower triangle
  720: *        of A and working forwards, and compute the matrix W = L21*D
  721: *        for use in updating A22 (note that conjg(W) is actually stored)
  722: *
  723: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  724: *
  725:          K = 1
  726:    70    CONTINUE
  727: *
  728: *        Exit from loop
  729: *
  730:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  731:      $      GO TO 90
  732: *
  733:          KSTEP = 1
  734:          P = K
  735: *
  736: *        Copy column K of A to column K of W and update column K of W
  737: *
  738:          W( K, K ) = DBLE( A( K, K ) )
  739:          IF( K.LT.N )
  740:      $      CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
  741:          IF( K.GT.1 ) THEN
  742:             CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  743:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  744:             W( K, K ) = DBLE( W( K, K ) )
  745:          END IF
  746: *
  747: *        Determine rows and columns to be interchanged and whether
  748: *        a 1-by-1 or 2-by-2 pivot block will be used
  749: *
  750:          ABSAKK = ABS( DBLE( W( K, K ) ) )
  751: *
  752: *        IMAX is the row-index of the largest off-diagonal element in
  753: *        column K, and COLMAX is its absolute value.
  754: *        Determine both COLMAX and IMAX.
  755: *
  756:          IF( K.LT.N ) THEN
  757:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  758:             COLMAX = CABS1( W( IMAX, K ) )
  759:          ELSE
  760:             COLMAX = ZERO
  761:          END IF
  762: *
  763:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  764: *
  765: *           Column K is zero or underflow: set INFO and continue
  766: *
  767:             IF( INFO.EQ.0 )
  768:      $         INFO = K
  769:             KP = K
  770:             A( K, K ) = DBLE( W( K, K ) )
  771:             IF( K.LT.N )
  772:      $         CALL ZCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
  773:          ELSE
  774: *
  775: *           ============================================================
  776: *
  777: *           BEGIN pivot search
  778: *
  779: *           Case(1)
  780: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  781: *           (used to handle NaN and Inf)
  782: *
  783:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  784: *
  785: *              no interchange, use 1-by-1 pivot block
  786: *
  787:                KP = K
  788: *
  789:             ELSE
  790: *
  791:                DONE = .FALSE.
  792: *
  793: *              Loop until pivot found
  794: *
  795:    72          CONTINUE
  796: *
  797: *                 BEGIN pivot search loop body
  798: *
  799: *
  800: *                 Copy column IMAX to column k+1 of W and update it
  801: *
  802:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  803:                   CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
  804:                   W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
  805: *
  806:                   IF( IMAX.LT.N )
  807:      $               CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
  808:      $                           W( IMAX+1, K+1 ), 1 )
  809: *
  810:                   IF( K.GT.1 ) THEN
  811:                      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  812:      $                            A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  813:      $                            CONE, W( K, K+1 ), 1 )
  814:                      W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
  815:                   END IF
  816: *
  817: *                 JMAX is the column-index of the largest off-diagonal
  818: *                 element in row IMAX, and ROWMAX is its absolute value.
  819: *                 Determine both ROWMAX and JMAX.
  820: *
  821:                   IF( IMAX.NE.K ) THEN
  822:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  823:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
  824:                   ELSE
  825:                      ROWMAX = ZERO
  826:                   END IF
  827: *
  828:                   IF( IMAX.LT.N ) THEN
  829:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  830:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
  831:                      IF( DTEMP.GT.ROWMAX ) THEN
  832:                         ROWMAX = DTEMP
  833:                         JMAX = ITEMP
  834:                      END IF
  835:                   END IF
  836: *
  837: *                 Case(2)
  838: *                 Equivalent to testing for
  839: *                 ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
  840: *                 (used to handle NaN and Inf)
  841: *
  842:                   IF( .NOT.( ABS( DBLE( W( IMAX,K+1 ) ) )
  843:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  844: *
  845: *                    interchange rows and columns K and IMAX,
  846: *                    use 1-by-1 pivot block
  847: *
  848:                      KP = IMAX
  849: *
  850: *                    copy column K+1 of W to column K of W
  851: *
  852:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  853: *
  854:                      DONE = .TRUE.
  855: *
  856: *                 Case(3)
  857: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  858: *                 (used to handle NaN and Inf)
  859: *
  860:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  861:      $            THEN
  862: *
  863: *                    interchange rows and columns K+1 and IMAX,
  864: *                    use 2-by-2 pivot block
  865: *
  866:                      KP = IMAX
  867:                      KSTEP = 2
  868:                      DONE = .TRUE.
  869: *
  870: *                 Case(4)
  871:                   ELSE
  872: *
  873: *                    Pivot not found: set params and repeat
  874: *
  875:                      P = IMAX
  876:                      COLMAX = ROWMAX
  877:                      IMAX = JMAX
  878: *
  879: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  880: *
  881:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  882: *
  883:                   END IF
  884: *
  885: *
  886: *                 End pivot search loop body
  887: *
  888:                IF( .NOT.DONE ) GOTO 72
  889: *
  890:             END IF
  891: *
  892: *           END pivot search
  893: *
  894: *           ============================================================
  895: *
  896: *           KK is the column of A where pivoting step stopped
  897: *
  898:             KK = K + KSTEP - 1
  899: *
  900: *           Interchange rows and columns P and K (only for 2-by-2 pivot).
  901: *           Updated column P is already stored in column K of W.
  902: *
  903:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  904: *
  905: *              Copy non-updated column KK-1 to column P of submatrix A
  906: *              at step K. No need to copy element into columns
  907: *              K and K+1 of A for 2-by-2 pivot, since these columns
  908: *              will be later overwritten.
  909: *
  910:                A( P, P ) = DBLE( A( K, K ) )
  911:                CALL ZCOPY( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  912:                CALL ZLACGV( P-K-1, A( P, K+1 ), LDA )
  913:                IF( P.LT.N )
  914:      $            CALL ZCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  915: *
  916: *              Interchange rows K and P in first K-1 columns of A
  917: *              (columns K and K+1 of A for 2-by-2 pivot will be
  918: *              later overwritten). Interchange rows K and P
  919: *              in first KK columns of W.
  920: *
  921:                IF( K.GT.1 )
  922:      $            CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
  923:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  924:             END IF
  925: *
  926: *           Interchange rows and columns KP and KK.
  927: *           Updated column KP is already stored in column KK of W.
  928: *
  929:             IF( KP.NE.KK ) THEN
  930: *
  931: *              Copy non-updated column KK to column KP of submatrix A
  932: *              at step K. No need to copy element into column K
  933: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
  934: *              will be later overwritten.
  935: *
  936:                A( KP, KP ) = DBLE( A( KK, KK ) )
  937:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  938:      $                     LDA )
  939:                CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
  940:                IF( KP.LT.N )
  941:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  942: *
  943: *              Interchange rows KK and KP in first K-1 columns of A
  944: *              (column K (or K and K+1 for 2-by-2 pivot) of A will be
  945: *              later overwritten). Interchange rows KK and KP
  946: *              in first KK columns of W.
  947: *
  948:                IF( K.GT.1 )
  949:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  950:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  951:             END IF
  952: *
  953:             IF( KSTEP.EQ.1 ) THEN
  954: *
  955: *              1-by-1 pivot block D(k): column k of W now holds
  956: *
  957: *              W(k) = L(k)*D(k),
  958: *
  959: *              where L(k) is the k-th column of L
  960: *
  961: *              (1) Store subdiag. elements of column L(k)
  962: *              and 1-by-1 block D(k) in column k of A.
  963: *              (NOTE: Diagonal element L(k,k) is a UNIT element
  964: *              and not stored)
  965: *                 A(k,k) := D(k,k) = W(k,k)
  966: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
  967: *
  968: *              (NOTE: No need to use for Hermitian matrix
  969: *              A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
  970: *              element D(k,k) from W (potentially saves only one load))
  971:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  972:                IF( K.LT.N ) THEN
  973: *
  974: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  975: *                  since that was ensured earlier in pivot search:
  976: *                  case A(k,k) = 0 falls into 2x2 pivot case(3))
  977: *
  978: *                 Handle division by a small number
  979: *
  980:                   T = DBLE( A( K, K ) )
  981:                   IF( ABS( T ).GE.SFMIN ) THEN
  982:                      R1 = ONE / T
  983:                      CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  984:                   ELSE
  985:                      DO 74 II = K + 1, N
  986:                         A( II, K ) = A( II, K ) / T
  987:    74                CONTINUE
  988:                   END IF
  989: *
  990: *                 (2) Conjugate column W(k)
  991: *
  992:                   CALL ZLACGV( N-K, W( K+1, K ), 1 )
  993:                END IF
  994: *
  995:             ELSE
  996: *
  997: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  998: *
  999: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 1000: *
 1001: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 1002: *              of L
 1003: *
 1004: *              (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
 1005: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
 1006: *              NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
 1007: *              block and not stored.
 1008: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
 1009: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
 1010: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
 1011: *
 1012:                IF( K.LT.N-1 ) THEN
 1013: *
 1014: *                 Factor out the columns of the inverse of 2-by-2 pivot
 1015: *                 block D, so that each column contains 1, to reduce the
 1016: *                 number of FLOPS when we multiply panel
 1017: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
 1018: *
 1019: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
 1020: *                           ( d21    d22 )
 1021: *
 1022: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
 1023: *                                          ( (-d21) (     d11 ) )
 1024: *
 1025: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
 1026: *
 1027: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
 1028: *                     (     (      -1 )           ( d11/conj(d21) ) )
 1029: *
 1030: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
 1031: *
 1032: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
 1033: *                     (     (  -1 )           ( D22 ) )
 1034: *
 1035: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
 1036: *                                      (     (  -1 )           ( D22 ) )
 1037: *
 1038: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
 1039: *                   (               (  -1 )         ( D22 ) )
 1040: *
 1041: *                 Handle division by a small number. (NOTE: order of
 1042: *                 operations is important)
 1043: *
 1044: *                 = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
 1045: *                   (   ((  -1 )          )   (( D22 )     ) ),
 1046: *
 1047: *                 where D11 = d22/d21,
 1048: *                       D22 = d11/conj(d21),
 1049: *                       D21 = d21,
 1050: *                       T = 1/(D22*D11-1).
 1051: *
 1052: *                 (NOTE: No need to check for division by ZERO,
 1053: *                  since that was ensured earlier in pivot search:
 1054: *                  (a) d21 != 0 in 2x2 pivot case(4),
 1055: *                      since |d21| should be larger than |d11| and |d22|;
 1056: *                  (b) (D22*D11 - 1) != 0, since from (a),
 1057: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
 1058: *
 1059:                   D21 = W( K+1, K )
 1060:                   D11 = W( K+1, K+1 ) / D21
 1061:                   D22 = W( K, K ) / DCONJG( D21 )
 1062:                   T = ONE / ( DBLE( D11*D22 )-ONE )
 1063: *
 1064: *                 Update elements in columns A(k) and A(k+1) as
 1065: *                 dot products of rows of ( W(k) W(k+1) ) and columns
 1066: *                 of D**(-1)
 1067: *
 1068:                   DO 80 J = K + 2, N
 1069:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
 1070:      $                           DCONJG( D21 ) )
 1071:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
 1072:      $                             D21 )
 1073:    80             CONTINUE
 1074:                END IF
 1075: *
 1076: *              Copy D(k) to A
 1077: *
 1078:                A( K, K ) = W( K, K )
 1079:                A( K+1, K ) = W( K+1, K )
 1080:                A( K+1, K+1 ) = W( K+1, K+1 )
 1081: *
 1082: *              (2) Conjugate columns W(k) and W(k+1)
 1083: *
 1084:                CALL ZLACGV( N-K, W( K+1, K ), 1 )
 1085:                CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
 1086: *
 1087:             END IF
 1088: *
 1089:          END IF
 1090: *
 1091: *        Store details of the interchanges in IPIV
 1092: *
 1093:          IF( KSTEP.EQ.1 ) THEN
 1094:             IPIV( K ) = KP
 1095:          ELSE
 1096:             IPIV( K ) = -P
 1097:             IPIV( K+1 ) = -KP
 1098:          END IF
 1099: *
 1100: *        Increase K and return to the start of the main loop
 1101: *
 1102:          K = K + KSTEP
 1103:          GO TO 70
 1104: *
 1105:    90    CONTINUE
 1106: *
 1107: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
 1108: *
 1109: *        A22 := A22 - L21*D*L21**H = A22 - L21*W**H
 1110: *
 1111: *        computing blocks of NB columns at a time (note that conjg(W) is
 1112: *        actually stored)
 1113: *
 1114:          DO 110 J = K, N, NB
 1115:             JB = MIN( NB, N-J+1 )
 1116: *
 1117: *           Update the lower triangle of the diagonal block
 1118: *
 1119:             DO 100 JJ = J, J + JB - 1
 1120:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
 1121:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
 1122:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
 1123:      $                     A( JJ, JJ ), 1 )
 1124:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
 1125:   100       CONTINUE
 1126: *
 1127: *           Update the rectangular subdiagonal block
 1128: *
 1129:             IF( J+JB.LE.N )
 1130:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 1131:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
 1132:      $                     LDW, CONE, A( J+JB, J ), LDA )
 1133:   110    CONTINUE
 1134: *
 1135: *        Put L21 in standard form by partially undoing the interchanges
 1136: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
 1137: *
 1138:          J = K - 1
 1139:   120    CONTINUE
 1140: *
 1141: *           Undo the interchanges (if any) of rows J and JP2
 1142: *           (or J and JP2, and J-1 and JP1) at each step J
 1143: *
 1144:             KSTEP = 1
 1145:             JP1 = 1
 1146: *           (Here, J is a diagonal index)
 1147:             JJ = J
 1148:             JP2 = IPIV( J )
 1149:             IF( JP2.LT.0 ) THEN
 1150:                JP2 = -JP2
 1151: *              (Here, J is a diagonal index)
 1152:                J = J - 1
 1153:                JP1 = -IPIV( J )
 1154:                KSTEP = 2
 1155:             END IF
 1156: *           (NOTE: Here, J is used to determine row length. Length J
 1157: *           of the rows to swap back doesn't include diagonal element)
 1158:             J = J - 1
 1159:             IF( JP2.NE.JJ .AND. J.GE.1 )
 1160:      $         CALL ZSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
 1161:             JJ = JJ -1
 1162:             IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.GE.1 )
 1163:      $         CALL ZSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
 1164:          IF( J.GT.1 )
 1165:      $      GO TO 120
 1166: *
 1167: *        Set KB to the number of columns factorized
 1168: *
 1169:          KB = K - 1
 1170: *
 1171:       END IF
 1172:       RETURN
 1173: *
 1174: *     End of ZLAHEF_ROOK
 1175: *
 1176:       END

CVSweb interface <joel.bertrand@systella.fr>