File:  [local] / rpl / lapack / lapack / zlahef_rk.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:29 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAHEF_RK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_rk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_rk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_rk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
   22: *                             INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *> ZLAHEF_RK computes a partial factorization of a complex Hermitian
   39: *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
   40: *> pivoting method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L',
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> ZLAHEF_RK is an auxiliary routine called by ZHETRF_RK. It uses
   52: *> blocked code (calling Level 3 BLAS) to update the submatrix
   53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          Hermitian matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is COMPLEX*16 array, dimension (LDA,N)
   92: *>          On entry, the Hermitian matrix A.
   93: *>            If UPLO = 'U': the leading N-by-N upper triangular part
   94: *>            of A contains the upper triangular part of the matrix A,
   95: *>            and the strictly lower triangular part of A is not
   96: *>            referenced.
   97: *>
   98: *>            If UPLO = 'L': the leading N-by-N lower triangular part
   99: *>            of A contains the lower triangular part of the matrix A,
  100: *>            and the strictly upper triangular part of A is not
  101: *>            referenced.
  102: *>
  103: *>          On exit, contains:
  104: *>            a) ONLY diagonal elements of the Hermitian block diagonal
  105: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  106: *>               (superdiagonal (or subdiagonal) elements of D
  107: *>                are stored on exit in array E), and
  108: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
  109: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDA
  113: *> \verbatim
  114: *>          LDA is INTEGER
  115: *>          The leading dimension of the array A.  LDA >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] E
  119: *> \verbatim
  120: *>          E is COMPLEX*16 array, dimension (N)
  121: *>          On exit, contains the superdiagonal (or subdiagonal)
  122: *>          elements of the Hermitian block diagonal matrix D
  123: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  124: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
  125: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
  126: *>
  127: *>          NOTE: For 1-by-1 diagonal block D(k), where
  128: *>          1 <= k <= N, the element E(k) is set to 0 in both
  129: *>          UPLO = 'U' or UPLO = 'L' cases.
  130: *> \endverbatim
  131: *>
  132: *> \param[out] IPIV
  133: *> \verbatim
  134: *>          IPIV is INTEGER array, dimension (N)
  135: *>          IPIV describes the permutation matrix P in the factorization
  136: *>          of matrix A as follows. The absolute value of IPIV(k)
  137: *>          represents the index of row and column that were
  138: *>          interchanged with the k-th row and column. The value of UPLO
  139: *>          describes the order in which the interchanges were applied.
  140: *>          Also, the sign of IPIV represents the block structure of
  141: *>          the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
  142: *>          diagonal blocks which correspond to 1 or 2 interchanges
  143: *>          at each factorization step.
  144: *>
  145: *>          If UPLO = 'U',
  146: *>          ( in factorization order, k decreases from N to 1 ):
  147: *>            a) A single positive entry IPIV(k) > 0 means:
  148: *>               D(k,k) is a 1-by-1 diagonal block.
  149: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  150: *>               interchanged in the submatrix A(1:N,N-KB+1:N);
  151: *>               If IPIV(k) = k, no interchange occurred.
  152: *>
  153: *>
  154: *>            b) A pair of consecutive negative entries
  155: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
  156: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  157: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  158: *>               1) If -IPIV(k) != k, rows and columns
  159: *>                  k and -IPIV(k) were interchanged
  160: *>                  in the matrix A(1:N,N-KB+1:N).
  161: *>                  If -IPIV(k) = k, no interchange occurred.
  162: *>               2) If -IPIV(k-1) != k-1, rows and columns
  163: *>                  k-1 and -IPIV(k-1) were interchanged
  164: *>                  in the submatrix A(1:N,N-KB+1:N).
  165: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
  166: *>
  167: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
  168: *>
  169: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  170: *>
  171: *>          If UPLO = 'L',
  172: *>          ( in factorization order, k increases from 1 to N ):
  173: *>            a) A single positive entry IPIV(k) > 0 means:
  174: *>               D(k,k) is a 1-by-1 diagonal block.
  175: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  176: *>               interchanged in the submatrix A(1:N,1:KB).
  177: *>               If IPIV(k) = k, no interchange occurred.
  178: *>
  179: *>            b) A pair of consecutive negative entries
  180: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
  181: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  182: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  183: *>               1) If -IPIV(k) != k, rows and columns
  184: *>                  k and -IPIV(k) were interchanged
  185: *>                  in the submatrix A(1:N,1:KB).
  186: *>                  If -IPIV(k) = k, no interchange occurred.
  187: *>               2) If -IPIV(k+1) != k+1, rows and columns
  188: *>                  k-1 and -IPIV(k-1) were interchanged
  189: *>                  in the submatrix A(1:N,1:KB).
  190: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
  191: *>
  192: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
  193: *>
  194: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] W
  198: *> \verbatim
  199: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDW
  203: *> \verbatim
  204: *>          LDW is INTEGER
  205: *>          The leading dimension of the array W.  LDW >= max(1,N).
  206: *> \endverbatim
  207: *>
  208: *> \param[out] INFO
  209: *> \verbatim
  210: *>          INFO is INTEGER
  211: *>          = 0: successful exit
  212: *>
  213: *>          < 0: If INFO = -k, the k-th argument had an illegal value
  214: *>
  215: *>          > 0: If INFO = k, the matrix A is singular, because:
  216: *>                 If UPLO = 'U': column k in the upper
  217: *>                 triangular part of A contains all zeros.
  218: *>                 If UPLO = 'L': column k in the lower
  219: *>                 triangular part of A contains all zeros.
  220: *>
  221: *>               Therefore D(k,k) is exactly zero, and superdiagonal
  222: *>               elements of column k of U (or subdiagonal elements of
  223: *>               column k of L ) are all zeros. The factorization has
  224: *>               been completed, but the block diagonal matrix D is
  225: *>               exactly singular, and division by zero will occur if
  226: *>               it is used to solve a system of equations.
  227: *>
  228: *>               NOTE: INFO only stores the first occurrence of
  229: *>               a singularity, any subsequent occurrence of singularity
  230: *>               is not stored in INFO even though the factorization
  231: *>               always completes.
  232: *> \endverbatim
  233: *
  234: *  Authors:
  235: *  ========
  236: *
  237: *> \author Univ. of Tennessee
  238: *> \author Univ. of California Berkeley
  239: *> \author Univ. of Colorado Denver
  240: *> \author NAG Ltd.
  241: *
  242: *> \ingroup complex16HEcomputational
  243: *
  244: *> \par Contributors:
  245: *  ==================
  246: *>
  247: *> \verbatim
  248: *>
  249: *>  December 2016,  Igor Kozachenko,
  250: *>                  Computer Science Division,
  251: *>                  University of California, Berkeley
  252: *>
  253: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  254: *>                  School of Mathematics,
  255: *>                  University of Manchester
  256: *>
  257: *> \endverbatim
  258: *
  259: *  =====================================================================
  260:       SUBROUTINE ZLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
  261:      $                      INFO )
  262: *
  263: *  -- LAPACK computational routine --
  264: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  265: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  266: *
  267: *     .. Scalar Arguments ..
  268:       CHARACTER          UPLO
  269:       INTEGER            INFO, KB, LDA, LDW, N, NB
  270: *     ..
  271: *     .. Array Arguments ..
  272:       INTEGER            IPIV( * )
  273:       COMPLEX*16         A( LDA, * ), W( LDW, * ), E( * )
  274: *     ..
  275: *
  276: *  =====================================================================
  277: *
  278: *     .. Parameters ..
  279:       DOUBLE PRECISION   ZERO, ONE
  280:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  281:       COMPLEX*16         CONE
  282:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  283:       DOUBLE PRECISION   EIGHT, SEVTEN
  284:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  285:       COMPLEX*16         CZERO
  286:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  287: *     ..
  288: *     .. Local Scalars ..
  289:       LOGICAL            DONE
  290:       INTEGER            IMAX, ITEMP, II, J, JB, JJ, JMAX, K, KK, KKW,
  291:      $                   KP, KSTEP, KW, P
  292:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, DTEMP, R1, ROWMAX, T,
  293:      $                   SFMIN
  294:       COMPLEX*16         D11, D21, D22, Z
  295: *     ..
  296: *     .. External Functions ..
  297:       LOGICAL            LSAME
  298:       INTEGER            IZAMAX
  299:       DOUBLE PRECISION   DLAMCH
  300:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  301: *     ..
  302: *     .. External Subroutines ..
  303:       EXTERNAL           ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
  304: *     ..
  305: *     .. Intrinsic Functions ..
  306:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
  307: *     ..
  308: *     .. Statement Functions ..
  309:       DOUBLE PRECISION   CABS1
  310: *     ..
  311: *     .. Statement Function definitions ..
  312:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  313: *     ..
  314: *     .. Executable Statements ..
  315: *
  316:       INFO = 0
  317: *
  318: *     Initialize ALPHA for use in choosing pivot block size.
  319: *
  320:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  321: *
  322: *     Compute machine safe minimum
  323: *
  324:       SFMIN = DLAMCH( 'S' )
  325: *
  326:       IF( LSAME( UPLO, 'U' ) ) THEN
  327: *
  328: *        Factorize the trailing columns of A using the upper triangle
  329: *        of A and working backwards, and compute the matrix W = U12*D
  330: *        for use in updating A11 (note that conjg(W) is actually stored)
  331: *        Initialize the first entry of array E, where superdiagonal
  332: *        elements of D are stored
  333: *
  334:          E( 1 ) = CZERO
  335: *
  336: *        K is the main loop index, decreasing from N in steps of 1 or 2
  337: *
  338:          K = N
  339:    10    CONTINUE
  340: *
  341: *        KW is the column of W which corresponds to column K of A
  342: *
  343:          KW = NB + K - N
  344: *
  345: *        Exit from loop
  346: *
  347:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  348:      $      GO TO 30
  349: *
  350:          KSTEP = 1
  351:          P = K
  352: *
  353: *        Copy column K of A to column KW of W and update it
  354: *
  355:          IF( K.GT.1 )
  356:      $      CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
  357:          W( K, KW ) = DBLE( A( K, K ) )
  358:          IF( K.LT.N ) THEN
  359:             CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  360:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  361:             W( K, KW ) = DBLE( W( K, KW ) )
  362:          END IF
  363: *
  364: *        Determine rows and columns to be interchanged and whether
  365: *        a 1-by-1 or 2-by-2 pivot block will be used
  366: *
  367:          ABSAKK = ABS( DBLE( W( K, KW ) ) )
  368: *
  369: *        IMAX is the row-index of the largest off-diagonal element in
  370: *        column K, and COLMAX is its absolute value.
  371: *        Determine both COLMAX and IMAX.
  372: *
  373:          IF( K.GT.1 ) THEN
  374:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  375:             COLMAX = CABS1( W( IMAX, KW ) )
  376:          ELSE
  377:             COLMAX = ZERO
  378:          END IF
  379: *
  380:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  381: *
  382: *           Column K is zero or underflow: set INFO and continue
  383: *
  384:             IF( INFO.EQ.0 )
  385:      $         INFO = K
  386:             KP = K
  387:             A( K, K ) = DBLE( W( K, KW ) )
  388:             IF( K.GT.1 )
  389:      $         CALL ZCOPY( K-1, W( 1, KW ), 1, A( 1, K ), 1 )
  390: *
  391: *           Set E( K ) to zero
  392: *
  393:             IF( K.GT.1 )
  394:      $         E( K ) = CZERO
  395: *
  396:          ELSE
  397: *
  398: *           ============================================================
  399: *
  400: *           BEGIN pivot search
  401: *
  402: *           Case(1)
  403: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  404: *           (used to handle NaN and Inf)
  405:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  406: *
  407: *              no interchange, use 1-by-1 pivot block
  408: *
  409:                KP = K
  410: *
  411:             ELSE
  412: *
  413: *              Lop until pivot found
  414: *
  415:                DONE = .FALSE.
  416: *
  417:    12          CONTINUE
  418: *
  419: *                 BEGIN pivot search loop body
  420: *
  421: *
  422: *                 Copy column IMAX to column KW-1 of W and update it
  423: *
  424:                   IF( IMAX.GT.1 )
  425:      $               CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
  426:      $                           1 )
  427:                   W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
  428: *
  429:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  430:      $                        W( IMAX+1, KW-1 ), 1 )
  431:                   CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  432: *
  433:                   IF( K.LT.N ) THEN
  434:                      CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  435:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  436:      $                           CONE, W( 1, KW-1 ), 1 )
  437:                      W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
  438:                   END IF
  439: *
  440: *                 JMAX is the column-index of the largest off-diagonal
  441: *                 element in row IMAX, and ROWMAX is its absolute value.
  442: *                 Determine both ROWMAX and JMAX.
  443: *
  444:                   IF( IMAX.NE.K ) THEN
  445:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  446:      $                                     1 )
  447:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
  448:                   ELSE
  449:                      ROWMAX = ZERO
  450:                   END IF
  451: *
  452:                   IF( IMAX.GT.1 ) THEN
  453:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  454:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
  455:                      IF( DTEMP.GT.ROWMAX ) THEN
  456:                         ROWMAX = DTEMP
  457:                         JMAX = ITEMP
  458:                      END IF
  459:                   END IF
  460: *
  461: *                 Case(2)
  462: *                 Equivalent to testing for
  463: *                 ABS( DBLE( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
  464: *                 (used to handle NaN and Inf)
  465: *
  466:                   IF( .NOT.( ABS( DBLE( W( IMAX,KW-1 ) ) )
  467:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  468: *
  469: *                    interchange rows and columns K and IMAX,
  470: *                    use 1-by-1 pivot block
  471: *
  472:                      KP = IMAX
  473: *
  474: *                    copy column KW-1 of W to column KW of W
  475: *
  476:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  477: *
  478:                      DONE = .TRUE.
  479: *
  480: *                 Case(3)
  481: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  482: *                 (used to handle NaN and Inf)
  483: *
  484:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  485:      $            THEN
  486: *
  487: *                    interchange rows and columns K-1 and IMAX,
  488: *                    use 2-by-2 pivot block
  489: *
  490:                      KP = IMAX
  491:                      KSTEP = 2
  492:                      DONE = .TRUE.
  493: *
  494: *                 Case(4)
  495:                   ELSE
  496: *
  497: *                    Pivot not found: set params and repeat
  498: *
  499:                      P = IMAX
  500:                      COLMAX = ROWMAX
  501:                      IMAX = JMAX
  502: *
  503: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  504: *
  505:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  506: *
  507:                   END IF
  508: *
  509: *
  510: *                 END pivot search loop body
  511: *
  512:                IF( .NOT.DONE ) GOTO 12
  513: *
  514:             END IF
  515: *
  516: *           END pivot search
  517: *
  518: *           ============================================================
  519: *
  520: *           KK is the column of A where pivoting step stopped
  521: *
  522:             KK = K - KSTEP + 1
  523: *
  524: *           KKW is the column of W which corresponds to column KK of A
  525: *
  526:             KKW = NB + KK - N
  527: *
  528: *           Interchange rows and columns P and K.
  529: *           Updated column P is already stored in column KW of W.
  530: *
  531:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  532: *
  533: *              Copy non-updated column K to column P of submatrix A
  534: *              at step K. No need to copy element into columns
  535: *              K and K-1 of A for 2-by-2 pivot, since these columns
  536: *              will be later overwritten.
  537: *
  538:                A( P, P ) = DBLE( A( K, K ) )
  539:                CALL ZCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
  540:      $                     LDA )
  541:                CALL ZLACGV( K-1-P, A( P, P+1 ), LDA )
  542:                IF( P.GT.1 )
  543:      $            CALL ZCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  544: *
  545: *              Interchange rows K and P in the last K+1 to N columns of A
  546: *              (columns K and K-1 of A for 2-by-2 pivot will be
  547: *              later overwritten). Interchange rows K and P
  548: *              in last KKW to NB columns of W.
  549: *
  550:                IF( K.LT.N )
  551:      $            CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
  552:      $                        LDA )
  553:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ),
  554:      $                     LDW )
  555:             END IF
  556: *
  557: *           Interchange rows and columns KP and KK.
  558: *           Updated column KP is already stored in column KKW of W.
  559: *
  560:             IF( KP.NE.KK ) THEN
  561: *
  562: *              Copy non-updated column KK to column KP of submatrix A
  563: *              at step K. No need to copy element into column K
  564: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  565: *              will be later overwritten.
  566: *
  567:                A( KP, KP ) = DBLE( A( KK, KK ) )
  568:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  569:      $                     LDA )
  570:                CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
  571:                IF( KP.GT.1 )
  572:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  573: *
  574: *              Interchange rows KK and KP in last K+1 to N columns of A
  575: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  576: *              later overwritten). Interchange rows KK and KP
  577: *              in last KKW to NB columns of W.
  578: *
  579:                IF( K.LT.N )
  580:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  581:      $                        LDA )
  582:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  583:      $                     LDW )
  584:             END IF
  585: *
  586:             IF( KSTEP.EQ.1 ) THEN
  587: *
  588: *              1-by-1 pivot block D(k): column kw of W now holds
  589: *
  590: *              W(kw) = U(k)*D(k),
  591: *
  592: *              where U(k) is the k-th column of U
  593: *
  594: *              (1) Store subdiag. elements of column U(k)
  595: *              and 1-by-1 block D(k) in column k of A.
  596: *              (NOTE: Diagonal element U(k,k) is a UNIT element
  597: *              and not stored)
  598: *                 A(k,k) := D(k,k) = W(k,kw)
  599: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  600: *
  601: *              (NOTE: No need to use for Hermitian matrix
  602: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
  603: *              element D(k,k) from W (potentially saves only one load))
  604:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  605:                IF( K.GT.1 ) THEN
  606: *
  607: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  608: *                  since that was ensured earlier in pivot search:
  609: *                  case A(k,k) = 0 falls into 2x2 pivot case(3))
  610: *
  611: *                 Handle division by a small number
  612: *
  613:                   T = DBLE( A( K, K ) )
  614:                   IF( ABS( T ).GE.SFMIN ) THEN
  615:                      R1 = ONE / T
  616:                      CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  617:                   ELSE
  618:                      DO 14 II = 1, K-1
  619:                         A( II, K ) = A( II, K ) / T
  620:    14                CONTINUE
  621:                   END IF
  622: *
  623: *                 (2) Conjugate column W(kw)
  624: *
  625:                   CALL ZLACGV( K-1, W( 1, KW ), 1 )
  626: *
  627: *                 Store the superdiagonal element of D in array E
  628: *
  629:                   E( K ) = CZERO
  630: *
  631:                END IF
  632: *
  633:             ELSE
  634: *
  635: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  636: *
  637: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  638: *
  639: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  640: *              of U
  641: *
  642: *              (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  643: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  644: *              (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  645: *              block and not stored)
  646: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  647: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  648: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  649: *
  650:                IF( K.GT.2 ) THEN
  651: *
  652: *                 Factor out the columns of the inverse of 2-by-2 pivot
  653: *                 block D, so that each column contains 1, to reduce the
  654: *                 number of FLOPS when we multiply panel
  655: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
  656: *
  657: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
  658: *                           ( d21    d22 )
  659: *
  660: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
  661: *                                          ( (-d21) (     d11 ) )
  662: *
  663: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
  664: *
  665: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
  666: *                     (     (      -1 )           ( d11/conj(d21) ) )
  667: *
  668: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
  669: *
  670: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  671: *                     (     (  -1 )           ( D22 ) )
  672: *
  673: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  674: *                                      (     (  -1 )           ( D22 ) )
  675: *
  676: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
  677: *                   (               (  -1 )         ( D22 ) )
  678: *
  679: *                 Handle division by a small number. (NOTE: order of
  680: *                 operations is important)
  681: *
  682: *                 = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
  683: *                   (   ((  -1 )          )   (( D22 )     ) ),
  684: *
  685: *                 where D11 = d22/d21,
  686: *                       D22 = d11/conj(d21),
  687: *                       D21 = d21,
  688: *                       T = 1/(D22*D11-1).
  689: *
  690: *                 (NOTE: No need to check for division by ZERO,
  691: *                  since that was ensured earlier in pivot search:
  692: *                  (a) d21 != 0 in 2x2 pivot case(4),
  693: *                      since |d21| should be larger than |d11| and |d22|;
  694: *                  (b) (D22*D11 - 1) != 0, since from (a),
  695: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
  696: *
  697:                   D21 = W( K-1, KW )
  698:                   D11 = W( K, KW ) / DCONJG( D21 )
  699:                   D22 = W( K-1, KW-1 ) / D21
  700:                   T = ONE / ( DBLE( D11*D22 )-ONE )
  701: *
  702: *                 Update elements in columns A(k-1) and A(k) as
  703: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  704: *                 of D**(-1)
  705: *
  706:                   DO 20 J = 1, K - 2
  707:                      A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
  708:      $                             D21 )
  709:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  710:      $                           DCONJG( D21 ) )
  711:    20             CONTINUE
  712:                END IF
  713: *
  714: *              Copy diagonal elements of D(K) to A,
  715: *              copy superdiagonal element of D(K) to E(K) and
  716: *              ZERO out superdiagonal entry of A
  717: *
  718:                A( K-1, K-1 ) = W( K-1, KW-1 )
  719:                A( K-1, K ) = CZERO
  720:                A( K, K ) = W( K, KW )
  721:                E( K ) = W( K-1, KW )
  722:                E( K-1 ) = CZERO
  723: *
  724: *              (2) Conjugate columns W(kw) and W(kw-1)
  725: *
  726:                CALL ZLACGV( K-1, W( 1, KW ), 1 )
  727:                CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
  728: *
  729:             END IF
  730: *
  731: *           End column K is nonsingular
  732: *
  733:          END IF
  734: *
  735: *        Store details of the interchanges in IPIV
  736: *
  737:          IF( KSTEP.EQ.1 ) THEN
  738:             IPIV( K ) = KP
  739:          ELSE
  740:             IPIV( K ) = -P
  741:             IPIV( K-1 ) = -KP
  742:          END IF
  743: *
  744: *        Decrease K and return to the start of the main loop
  745: *
  746:          K = K - KSTEP
  747:          GO TO 10
  748: *
  749:    30    CONTINUE
  750: *
  751: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  752: *
  753: *        A11 := A11 - U12*D*U12**H = A11 - U12*W**H
  754: *
  755: *        computing blocks of NB columns at a time (note that conjg(W) is
  756: *        actually stored)
  757: *
  758:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  759:             JB = MIN( NB, K-J+1 )
  760: *
  761: *           Update the upper triangle of the diagonal block
  762: *
  763:             DO 40 JJ = J, J + JB - 1
  764:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  765:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  766:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  767:      $                     A( J, JJ ), 1 )
  768:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  769:    40       CONTINUE
  770: *
  771: *           Update the rectangular superdiagonal block
  772: *
  773:             IF( J.GE.2 )
  774:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  775:      $                     -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  776:      $                     CONE, A( 1, J ), LDA )
  777:    50    CONTINUE
  778: *
  779: *        Set KB to the number of columns factorized
  780: *
  781:          KB = N - K
  782: *
  783:       ELSE
  784: *
  785: *        Factorize the leading columns of A using the lower triangle
  786: *        of A and working forwards, and compute the matrix W = L21*D
  787: *        for use in updating A22 (note that conjg(W) is actually stored)
  788: *
  789: *        Initialize the unused last entry of the subdiagonal array E.
  790: *
  791:          E( N ) = CZERO
  792: *
  793: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  794: *
  795:          K = 1
  796:    70    CONTINUE
  797: *
  798: *        Exit from loop
  799: *
  800:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  801:      $      GO TO 90
  802: *
  803:          KSTEP = 1
  804:          P = K
  805: *
  806: *        Copy column K of A to column K of W and update column K of W
  807: *
  808:          W( K, K ) = DBLE( A( K, K ) )
  809:          IF( K.LT.N )
  810:      $      CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
  811:          IF( K.GT.1 ) THEN
  812:             CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  813:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  814:             W( K, K ) = DBLE( W( K, K ) )
  815:          END IF
  816: *
  817: *        Determine rows and columns to be interchanged and whether
  818: *        a 1-by-1 or 2-by-2 pivot block will be used
  819: *
  820:          ABSAKK = ABS( DBLE( W( K, K ) ) )
  821: *
  822: *        IMAX is the row-index of the largest off-diagonal element in
  823: *        column K, and COLMAX is its absolute value.
  824: *        Determine both COLMAX and IMAX.
  825: *
  826:          IF( K.LT.N ) THEN
  827:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  828:             COLMAX = CABS1( W( IMAX, K ) )
  829:          ELSE
  830:             COLMAX = ZERO
  831:          END IF
  832: *
  833:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  834: *
  835: *           Column K is zero or underflow: set INFO and continue
  836: *
  837:             IF( INFO.EQ.0 )
  838:      $         INFO = K
  839:             KP = K
  840:             A( K, K ) = DBLE( W( K, K ) )
  841:             IF( K.LT.N )
  842:      $         CALL ZCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
  843: *
  844: *           Set E( K ) to zero
  845: *
  846:             IF( K.LT.N )
  847:      $         E( K ) = CZERO
  848: *
  849:          ELSE
  850: *
  851: *           ============================================================
  852: *
  853: *           BEGIN pivot search
  854: *
  855: *           Case(1)
  856: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  857: *           (used to handle NaN and Inf)
  858: *
  859:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  860: *
  861: *              no interchange, use 1-by-1 pivot block
  862: *
  863:                KP = K
  864: *
  865:             ELSE
  866: *
  867:                DONE = .FALSE.
  868: *
  869: *              Loop until pivot found
  870: *
  871:    72          CONTINUE
  872: *
  873: *                 BEGIN pivot search loop body
  874: *
  875: *
  876: *                 Copy column IMAX to column k+1 of W and update it
  877: *
  878:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  879:                   CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
  880:                   W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
  881: *
  882:                   IF( IMAX.LT.N )
  883:      $               CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
  884:      $                           W( IMAX+1, K+1 ), 1 )
  885: *
  886:                   IF( K.GT.1 ) THEN
  887:                      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  888:      $                            A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  889:      $                            CONE, W( K, K+1 ), 1 )
  890:                      W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
  891:                   END IF
  892: *
  893: *                 JMAX is the column-index of the largest off-diagonal
  894: *                 element in row IMAX, and ROWMAX is its absolute value.
  895: *                 Determine both ROWMAX and JMAX.
  896: *
  897:                   IF( IMAX.NE.K ) THEN
  898:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  899:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
  900:                   ELSE
  901:                      ROWMAX = ZERO
  902:                   END IF
  903: *
  904:                   IF( IMAX.LT.N ) THEN
  905:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  906:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
  907:                      IF( DTEMP.GT.ROWMAX ) THEN
  908:                         ROWMAX = DTEMP
  909:                         JMAX = ITEMP
  910:                      END IF
  911:                   END IF
  912: *
  913: *                 Case(2)
  914: *                 Equivalent to testing for
  915: *                 ABS( DBLE( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
  916: *                 (used to handle NaN and Inf)
  917: *
  918:                   IF( .NOT.( ABS( DBLE( W( IMAX,K+1 ) ) )
  919:      $                       .LT.ALPHA*ROWMAX ) ) THEN
  920: *
  921: *                    interchange rows and columns K and IMAX,
  922: *                    use 1-by-1 pivot block
  923: *
  924:                      KP = IMAX
  925: *
  926: *                    copy column K+1 of W to column K of W
  927: *
  928:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  929: *
  930:                      DONE = .TRUE.
  931: *
  932: *                 Case(3)
  933: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  934: *                 (used to handle NaN and Inf)
  935: *
  936:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  937:      $            THEN
  938: *
  939: *                    interchange rows and columns K+1 and IMAX,
  940: *                    use 2-by-2 pivot block
  941: *
  942:                      KP = IMAX
  943:                      KSTEP = 2
  944:                      DONE = .TRUE.
  945: *
  946: *                 Case(4)
  947:                   ELSE
  948: *
  949: *                    Pivot not found: set params and repeat
  950: *
  951:                      P = IMAX
  952:                      COLMAX = ROWMAX
  953:                      IMAX = JMAX
  954: *
  955: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  956: *
  957:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  958: *
  959:                   END IF
  960: *
  961: *
  962: *                 End pivot search loop body
  963: *
  964:                IF( .NOT.DONE ) GOTO 72
  965: *
  966:             END IF
  967: *
  968: *           END pivot search
  969: *
  970: *           ============================================================
  971: *
  972: *           KK is the column of A where pivoting step stopped
  973: *
  974:             KK = K + KSTEP - 1
  975: *
  976: *           Interchange rows and columns P and K (only for 2-by-2 pivot).
  977: *           Updated column P is already stored in column K of W.
  978: *
  979:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  980: *
  981: *              Copy non-updated column KK-1 to column P of submatrix A
  982: *              at step K. No need to copy element into columns
  983: *              K and K+1 of A for 2-by-2 pivot, since these columns
  984: *              will be later overwritten.
  985: *
  986:                A( P, P ) = DBLE( A( K, K ) )
  987:                CALL ZCOPY( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  988:                CALL ZLACGV( P-K-1, A( P, K+1 ), LDA )
  989:                IF( P.LT.N )
  990:      $            CALL ZCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  991: *
  992: *              Interchange rows K and P in first K-1 columns of A
  993: *              (columns K and K+1 of A for 2-by-2 pivot will be
  994: *              later overwritten). Interchange rows K and P
  995: *              in first KK columns of W.
  996: *
  997:                IF( K.GT.1 )
  998:      $            CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
  999:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
 1000:             END IF
 1001: *
 1002: *           Interchange rows and columns KP and KK.
 1003: *           Updated column KP is already stored in column KK of W.
 1004: *
 1005:             IF( KP.NE.KK ) THEN
 1006: *
 1007: *              Copy non-updated column KK to column KP of submatrix A
 1008: *              at step K. No need to copy element into column K
 1009: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
 1010: *              will be later overwritten.
 1011: *
 1012:                A( KP, KP ) = DBLE( A( KK, KK ) )
 1013:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
 1014:      $                     LDA )
 1015:                CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
 1016:                IF( KP.LT.N )
 1017:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
 1018: *
 1019: *              Interchange rows KK and KP in first K-1 columns of A
 1020: *              (column K (or K and K+1 for 2-by-2 pivot) of A will be
 1021: *              later overwritten). Interchange rows KK and KP
 1022: *              in first KK columns of W.
 1023: *
 1024:                IF( K.GT.1 )
 1025:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
 1026:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
 1027:             END IF
 1028: *
 1029:             IF( KSTEP.EQ.1 ) THEN
 1030: *
 1031: *              1-by-1 pivot block D(k): column k of W now holds
 1032: *
 1033: *              W(k) = L(k)*D(k),
 1034: *
 1035: *              where L(k) is the k-th column of L
 1036: *
 1037: *              (1) Store subdiag. elements of column L(k)
 1038: *              and 1-by-1 block D(k) in column k of A.
 1039: *              (NOTE: Diagonal element L(k,k) is a UNIT element
 1040: *              and not stored)
 1041: *                 A(k,k) := D(k,k) = W(k,k)
 1042: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
 1043: *
 1044: *              (NOTE: No need to use for Hermitian matrix
 1045: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
 1046: *              element D(k,k) from W (potentially saves only one load))
 1047:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
 1048:                IF( K.LT.N ) THEN
 1049: *
 1050: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
 1051: *                  since that was ensured earlier in pivot search:
 1052: *                  case A(k,k) = 0 falls into 2x2 pivot case(3))
 1053: *
 1054: *                 Handle division by a small number
 1055: *
 1056:                   T = DBLE( A( K, K ) )
 1057:                   IF( ABS( T ).GE.SFMIN ) THEN
 1058:                      R1 = ONE / T
 1059:                      CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
 1060:                   ELSE
 1061:                      DO 74 II = K + 1, N
 1062:                         A( II, K ) = A( II, K ) / T
 1063:    74                CONTINUE
 1064:                   END IF
 1065: *
 1066: *                 (2) Conjugate column W(k)
 1067: *
 1068:                   CALL ZLACGV( N-K, W( K+1, K ), 1 )
 1069: *
 1070: *                 Store the subdiagonal element of D in array E
 1071: *
 1072:                   E( K ) = CZERO
 1073: *
 1074:                END IF
 1075: *
 1076:             ELSE
 1077: *
 1078: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
 1079: *
 1080: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 1081: *
 1082: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 1083: *              of L
 1084: *
 1085: *              (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
 1086: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
 1087: *              NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
 1088: *              block and not stored.
 1089: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
 1090: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
 1091: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
 1092: *
 1093:                IF( K.LT.N-1 ) THEN
 1094: *
 1095: *                 Factor out the columns of the inverse of 2-by-2 pivot
 1096: *                 block D, so that each column contains 1, to reduce the
 1097: *                 number of FLOPS when we multiply panel
 1098: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
 1099: *
 1100: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
 1101: *                           ( d21    d22 )
 1102: *
 1103: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
 1104: *                                          ( (-d21) (     d11 ) )
 1105: *
 1106: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
 1107: *
 1108: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
 1109: *                     (     (      -1 )           ( d11/conj(d21) ) )
 1110: *
 1111: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
 1112: *
 1113: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
 1114: *                     (     (  -1 )           ( D22 ) )
 1115: *
 1116: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
 1117: *                                      (     (  -1 )           ( D22 ) )
 1118: *
 1119: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
 1120: *                   (               (  -1 )         ( D22 ) )
 1121: *
 1122: *                 Handle division by a small number. (NOTE: order of
 1123: *                 operations is important)
 1124: *
 1125: *                 = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
 1126: *                   (   ((  -1 )          )   (( D22 )     ) ),
 1127: *
 1128: *                 where D11 = d22/d21,
 1129: *                       D22 = d11/conj(d21),
 1130: *                       D21 = d21,
 1131: *                       T = 1/(D22*D11-1).
 1132: *
 1133: *                 (NOTE: No need to check for division by ZERO,
 1134: *                  since that was ensured earlier in pivot search:
 1135: *                  (a) d21 != 0 in 2x2 pivot case(4),
 1136: *                      since |d21| should be larger than |d11| and |d22|;
 1137: *                  (b) (D22*D11 - 1) != 0, since from (a),
 1138: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
 1139: *
 1140:                   D21 = W( K+1, K )
 1141:                   D11 = W( K+1, K+1 ) / D21
 1142:                   D22 = W( K, K ) / DCONJG( D21 )
 1143:                   T = ONE / ( DBLE( D11*D22 )-ONE )
 1144: *
 1145: *                 Update elements in columns A(k) and A(k+1) as
 1146: *                 dot products of rows of ( W(k) W(k+1) ) and columns
 1147: *                 of D**(-1)
 1148: *
 1149:                   DO 80 J = K + 2, N
 1150:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
 1151:      $                           DCONJG( D21 ) )
 1152:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
 1153:      $                             D21 )
 1154:    80             CONTINUE
 1155:                END IF
 1156: *
 1157: *              Copy diagonal elements of D(K) to A,
 1158: *              copy subdiagonal element of D(K) to E(K) and
 1159: *              ZERO out subdiagonal entry of A
 1160: *
 1161:                A( K, K ) = W( K, K )
 1162:                A( K+1, K ) = CZERO
 1163:                A( K+1, K+1 ) = W( K+1, K+1 )
 1164:                E( K ) = W( K+1, K )
 1165:                E( K+1 ) = CZERO
 1166: *
 1167: *              (2) Conjugate columns W(k) and W(k+1)
 1168: *
 1169:                CALL ZLACGV( N-K, W( K+1, K ), 1 )
 1170:                CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
 1171: *
 1172:             END IF
 1173: *
 1174: *           End column K is nonsingular
 1175: *
 1176:          END IF
 1177: *
 1178: *        Store details of the interchanges in IPIV
 1179: *
 1180:          IF( KSTEP.EQ.1 ) THEN
 1181:             IPIV( K ) = KP
 1182:          ELSE
 1183:             IPIV( K ) = -P
 1184:             IPIV( K+1 ) = -KP
 1185:          END IF
 1186: *
 1187: *        Increase K and return to the start of the main loop
 1188: *
 1189:          K = K + KSTEP
 1190:          GO TO 70
 1191: *
 1192:    90    CONTINUE
 1193: *
 1194: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
 1195: *
 1196: *        A22 := A22 - L21*D*L21**H = A22 - L21*W**H
 1197: *
 1198: *        computing blocks of NB columns at a time (note that conjg(W) is
 1199: *        actually stored)
 1200: *
 1201:          DO 110 J = K, N, NB
 1202:             JB = MIN( NB, N-J+1 )
 1203: *
 1204: *           Update the lower triangle of the diagonal block
 1205: *
 1206:             DO 100 JJ = J, J + JB - 1
 1207:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
 1208:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
 1209:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
 1210:      $                     A( JJ, JJ ), 1 )
 1211:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
 1212:   100       CONTINUE
 1213: *
 1214: *           Update the rectangular subdiagonal block
 1215: *
 1216:             IF( J+JB.LE.N )
 1217:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 1218:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
 1219:      $                     LDW, CONE, A( J+JB, J ), LDA )
 1220:   110    CONTINUE
 1221: *
 1222: *        Set KB to the number of columns factorized
 1223: *
 1224:          KB = K - 1
 1225: *
 1226:       END IF
 1227:       RETURN
 1228: *
 1229: *     End of ZLAHEF_RK
 1230: *
 1231:       END

CVSweb interface <joel.bertrand@systella.fr>