File:  [local] / rpl / lapack / lapack / zlahef_aa.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:29 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAHEF_AA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAHEF_AA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_aa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_aa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_aa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
   22: *                             H, LDH, WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER    UPLO
   26: *       INTEGER      J1, M, NB, LDA, LDH
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER      IPIV( * )
   30: *       COMPLEX*16   A( LDA, * ), H( LDH, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLAHEF_AA factorizes a panel of a complex hermitian matrix A using
   40: *> the Aasen's algorithm. The panel consists of a set of NB rows of A
   41: *> when UPLO is U, or a set of NB columns when UPLO is L.
   42: *>
   43: *> In order to factorize the panel, the Aasen's algorithm requires the
   44: *> last row, or column, of the previous panel. The first row, or column,
   45: *> of A is set to be the first row, or column, of an identity matrix,
   46: *> which is used to factorize the first panel.
   47: *>
   48: *> The resulting J-th row of U, or J-th column of L, is stored in the
   49: *> (J-1)-th row, or column, of A (without the unit diagonals), while
   50: *> the diagonal and subdiagonal of A are overwritten by those of T.
   51: *>
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] UPLO
   58: *> \verbatim
   59: *>          UPLO is CHARACTER*1
   60: *>          = 'U':  Upper triangle of A is stored;
   61: *>          = 'L':  Lower triangle of A is stored.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] J1
   65: *> \verbatim
   66: *>          J1 is INTEGER
   67: *>          The location of the first row, or column, of the panel
   68: *>          within the submatrix of A, passed to this routine, e.g.,
   69: *>          when called by ZHETRF_AA, for the first panel, J1 is 1,
   70: *>          while for the remaining panels, J1 is 2.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] M
   74: *> \verbatim
   75: *>          M is INTEGER
   76: *>          The dimension of the submatrix. M >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] NB
   80: *> \verbatim
   81: *>          NB is INTEGER
   82: *>          The dimension of the panel to be facotorized.
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] A
   86: *> \verbatim
   87: *>          A is COMPLEX*16 array, dimension (LDA,M) for
   88: *>          the first panel, while dimension (LDA,M+1) for the
   89: *>          remaining panels.
   90: *>
   91: *>          On entry, A contains the last row, or column, of
   92: *>          the previous panel, and the trailing submatrix of A
   93: *>          to be factorized, except for the first panel, only
   94: *>          the panel is passed.
   95: *>
   96: *>          On exit, the leading panel is factorized.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>          The leading dimension of the array A.  LDA >= max(1,N).
  103: *> \endverbatim
  104: *>
  105: *> \param[out] IPIV
  106: *> \verbatim
  107: *>          IPIV is INTEGER array, dimension (N)
  108: *>          Details of the row and column interchanges,
  109: *>          the row and column k were interchanged with the row and
  110: *>          column IPIV(k).
  111: *> \endverbatim
  112: *>
  113: *> \param[in,out] H
  114: *> \verbatim
  115: *>          H is COMPLEX*16 workspace, dimension (LDH,NB).
  116: *>
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDH
  120: *> \verbatim
  121: *>          LDH is INTEGER
  122: *>          The leading dimension of the workspace H. LDH >= max(1,M).
  123: *> \endverbatim
  124: *>
  125: *> \param[out] WORK
  126: *> \verbatim
  127: *>          WORK is COMPLEX*16 workspace, dimension (M).
  128: *> \endverbatim
  129: *>
  130: *
  131: *  Authors:
  132: *  ========
  133: *
  134: *> \author Univ. of Tennessee
  135: *> \author Univ. of California Berkeley
  136: *> \author Univ. of Colorado Denver
  137: *> \author NAG Ltd.
  138: *
  139: *> \ingroup complex16HEcomputational
  140: *
  141: *  =====================================================================
  142:       SUBROUTINE ZLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
  143:      $                      H, LDH, WORK )
  144: *
  145: *  -- LAPACK computational routine --
  146: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *
  149:       IMPLICIT NONE
  150: *
  151: *     .. Scalar Arguments ..
  152:       CHARACTER    UPLO
  153:       INTEGER      M, NB, J1, LDA, LDH
  154: *     ..
  155: *     .. Array Arguments ..
  156:       INTEGER      IPIV( * )
  157:       COMPLEX*16   A( LDA, * ), H( LDH, * ), WORK( * )
  158: *     ..
  159: *
  160: *  =====================================================================
  161: *     .. Parameters ..
  162:       COMPLEX*16   ZERO, ONE
  163:       PARAMETER    ( ZERO = (0.0D+0, 0.0D+0), ONE = (1.0D+0, 0.0D+0) )
  164: *
  165: *     .. Local Scalars ..
  166:       INTEGER      J, K, K1, I1, I2, MJ
  167:       COMPLEX*16   PIV, ALPHA
  168: *     ..
  169: *     .. External Functions ..
  170:       LOGICAL      LSAME
  171:       INTEGER      IZAMAX, ILAENV
  172:       EXTERNAL     LSAME, ILAENV, IZAMAX
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL     ZGEMM, ZGEMV, ZAXPY, ZLACGV, ZCOPY, ZSCAL, ZSWAP,
  176:      $             ZLASET, XERBLA
  177: *     ..
  178: *     .. Intrinsic Functions ..
  179:       INTRINSIC    DBLE, DCONJG, MAX
  180: *     ..
  181: *     .. Executable Statements ..
  182: *
  183:       J = 1
  184: *
  185: *     K1 is the first column of the panel to be factorized
  186: *     i.e.,  K1 is 2 for the first block column, and 1 for the rest of the blocks
  187: *
  188:       K1 = (2-J1)+1
  189: *
  190:       IF( LSAME( UPLO, 'U' ) ) THEN
  191: *
  192: *        .....................................................
  193: *        Factorize A as U**T*D*U using the upper triangle of A
  194: *        .....................................................
  195: *
  196:  10      CONTINUE
  197:          IF ( J.GT.MIN(M, NB) )
  198:      $      GO TO 20
  199: *
  200: *        K is the column to be factorized
  201: *         when being called from ZHETRF_AA,
  202: *         > for the first block column, J1 is 1, hence J1+J-1 is J,
  203: *         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
  204: *
  205:          K = J1+J-1
  206:          IF( J.EQ.M ) THEN
  207: *
  208: *            Only need to compute T(J, J)
  209: *
  210:              MJ = 1
  211:          ELSE
  212:              MJ = M-J+1
  213:          END IF
  214: *
  215: *        H(J:N, J) := A(J, J:N) - H(J:N, 1:(J-1)) * L(J1:(J-1), J),
  216: *         where H(J:N, J) has been initialized to be A(J, J:N)
  217: *
  218:          IF( K.GT.2 ) THEN
  219: *
  220: *        K is the column to be factorized
  221: *         > for the first block column, K is J, skipping the first two
  222: *           columns
  223: *         > for the rest of the columns, K is J+1, skipping only the
  224: *           first column
  225: *
  226:             CALL ZLACGV( J-K1, A( 1, J ), 1 )
  227:             CALL ZGEMV( 'No transpose', MJ, J-K1,
  228:      $                 -ONE, H( J, K1 ), LDH,
  229:      $                       A( 1, J ), 1,
  230:      $                  ONE, H( J, J ), 1 )
  231:             CALL ZLACGV( J-K1, A( 1, J ), 1 )
  232:          END IF
  233: *
  234: *        Copy H(i:n, i) into WORK
  235: *
  236:          CALL ZCOPY( MJ, H( J, J ), 1, WORK( 1 ), 1 )
  237: *
  238:          IF( J.GT.K1 ) THEN
  239: *
  240: *           Compute WORK := WORK - L(J-1, J:N) * T(J-1,J),
  241: *            where A(J-1, J) stores T(J-1, J) and A(J-2, J:N) stores U(J-1, J:N)
  242: *
  243:             ALPHA = -DCONJG( A( K-1, J ) )
  244:             CALL ZAXPY( MJ, ALPHA, A( K-2, J ), LDA, WORK( 1 ), 1 )
  245:          END IF
  246: *
  247: *        Set A(J, J) = T(J, J)
  248: *
  249:          A( K, J ) = DBLE( WORK( 1 ) )
  250: *
  251:          IF( J.LT.M ) THEN
  252: *
  253: *           Compute WORK(2:N) = T(J, J) L(J, (J+1):N)
  254: *            where A(J, J) stores T(J, J) and A(J-1, (J+1):N) stores U(J, (J+1):N)
  255: *
  256:             IF( K.GT.1 ) THEN
  257:                ALPHA = -A( K, J )
  258:                CALL ZAXPY( M-J, ALPHA, A( K-1, J+1 ), LDA,
  259:      $                                 WORK( 2 ), 1 )
  260:             ENDIF
  261: *
  262: *           Find max(|WORK(2:n)|)
  263: *
  264:             I2 = IZAMAX( M-J, WORK( 2 ), 1 ) + 1
  265:             PIV = WORK( I2 )
  266: *
  267: *           Apply hermitian pivot
  268: *
  269:             IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
  270: *
  271: *              Swap WORK(I1) and WORK(I2)
  272: *
  273:                I1 = 2
  274:                WORK( I2 ) = WORK( I1 )
  275:                WORK( I1 ) = PIV
  276: *
  277: *              Swap A(I1, I1+1:N) with A(I1+1:N, I2)
  278: *
  279:                I1 = I1+J-1
  280:                I2 = I2+J-1
  281:                CALL ZSWAP( I2-I1-1, A( J1+I1-1, I1+1 ), LDA,
  282:      $                              A( J1+I1, I2 ), 1 )
  283:                CALL ZLACGV( I2-I1, A( J1+I1-1, I1+1 ), LDA )
  284:                CALL ZLACGV( I2-I1-1, A( J1+I1, I2 ), 1 )
  285: *
  286: *              Swap A(I1, I2+1:N) with A(I2, I2+1:N)
  287: *
  288:                IF( I2.LT.M )
  289:      $            CALL ZSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
  290:      $                              A( J1+I2-1, I2+1 ), LDA )
  291: *
  292: *              Swap A(I1, I1) with A(I2,I2)
  293: *
  294:                PIV = A( I1+J1-1, I1 )
  295:                A( J1+I1-1, I1 ) = A( J1+I2-1, I2 )
  296:                A( J1+I2-1, I2 ) = PIV
  297: *
  298: *              Swap H(I1, 1:J1) with H(I2, 1:J1)
  299: *
  300:                CALL ZSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
  301:                IPIV( I1 ) = I2
  302: *
  303:                IF( I1.GT.(K1-1) ) THEN
  304: *
  305: *                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
  306: *                  skipping the first column
  307: *
  308:                   CALL ZSWAP( I1-K1+1, A( 1, I1 ), 1,
  309:      $                                 A( 1, I2 ), 1 )
  310:                END IF
  311:             ELSE
  312:                IPIV( J+1 ) = J+1
  313:             ENDIF
  314: *
  315: *           Set A(J, J+1) = T(J, J+1)
  316: *
  317:             A( K, J+1 ) = WORK( 2 )
  318: *
  319:             IF( J.LT.NB ) THEN
  320: *
  321: *              Copy A(J+1:N, J+1) into H(J:N, J),
  322: *
  323:                CALL ZCOPY( M-J, A( K+1, J+1 ), LDA,
  324:      $                          H( J+1, J+1 ), 1 )
  325:             END IF
  326: *
  327: *           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1),
  328: *            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1)
  329: *
  330:             IF( J.LT.(M-1) ) THEN
  331:                IF( A( K, J+1 ).NE.ZERO ) THEN
  332:                   ALPHA = ONE / A( K, J+1 )
  333:                   CALL ZCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
  334:                   CALL ZSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
  335:                ELSE
  336:                   CALL ZLASET( 'Full', 1, M-J-1, ZERO, ZERO,
  337:      $                         A( K, J+2 ), LDA)
  338:                END IF
  339:             END IF
  340:          END IF
  341:          J = J + 1
  342:          GO TO 10
  343:  20      CONTINUE
  344: *
  345:       ELSE
  346: *
  347: *        .....................................................
  348: *        Factorize A as L*D*L**T using the lower triangle of A
  349: *        .....................................................
  350: *
  351:  30      CONTINUE
  352:          IF( J.GT.MIN( M, NB ) )
  353:      $      GO TO 40
  354: *
  355: *        K is the column to be factorized
  356: *         when being called from ZHETRF_AA,
  357: *         > for the first block column, J1 is 1, hence J1+J-1 is J,
  358: *         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
  359: *
  360:          K = J1+J-1
  361:          IF( J.EQ.M ) THEN
  362: *
  363: *            Only need to compute T(J, J)
  364: *
  365:              MJ = 1
  366:          ELSE
  367:              MJ = M-J+1
  368:          END IF
  369: *
  370: *        H(J:N, J) := A(J:N, J) - H(J:N, 1:(J-1)) * L(J, J1:(J-1))^T,
  371: *         where H(J:N, J) has been initialized to be A(J:N, J)
  372: *
  373:          IF( K.GT.2 ) THEN
  374: *
  375: *        K is the column to be factorized
  376: *         > for the first block column, K is J, skipping the first two
  377: *           columns
  378: *         > for the rest of the columns, K is J+1, skipping only the
  379: *           first column
  380: *
  381:             CALL ZLACGV( J-K1, A( J, 1 ), LDA )
  382:             CALL ZGEMV( 'No transpose', MJ, J-K1,
  383:      $                 -ONE, H( J, K1 ), LDH,
  384:      $                       A( J, 1 ), LDA,
  385:      $                  ONE, H( J, J ), 1 )
  386:             CALL ZLACGV( J-K1, A( J, 1 ), LDA )
  387:          END IF
  388: *
  389: *        Copy H(J:N, J) into WORK
  390: *
  391:          CALL ZCOPY( MJ, H( J, J ), 1, WORK( 1 ), 1 )
  392: *
  393:          IF( J.GT.K1 ) THEN
  394: *
  395: *           Compute WORK := WORK - L(J:N, J-1) * T(J-1,J),
  396: *            where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1)
  397: *
  398:             ALPHA = -DCONJG( A( J, K-1 ) )
  399:             CALL ZAXPY( MJ, ALPHA, A( J, K-2 ), 1, WORK( 1 ), 1 )
  400:          END IF
  401: *
  402: *        Set A(J, J) = T(J, J)
  403: *
  404:          A( J, K ) = DBLE( WORK( 1 ) )
  405: *
  406:          IF( J.LT.M ) THEN
  407: *
  408: *           Compute WORK(2:N) = T(J, J) L((J+1):N, J)
  409: *            where A(J, J) = T(J, J) and A((J+1):N, J-1) = L((J+1):N, J)
  410: *
  411:             IF( K.GT.1 ) THEN
  412:                ALPHA = -A( J, K )
  413:                CALL ZAXPY( M-J, ALPHA, A( J+1, K-1 ), 1,
  414:      $                                 WORK( 2 ), 1 )
  415:             ENDIF
  416: *
  417: *           Find max(|WORK(2:n)|)
  418: *
  419:             I2 = IZAMAX( M-J, WORK( 2 ), 1 ) + 1
  420:             PIV = WORK( I2 )
  421: *
  422: *           Apply hermitian pivot
  423: *
  424:             IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
  425: *
  426: *              Swap WORK(I1) and WORK(I2)
  427: *
  428:                I1 = 2
  429:                WORK( I2 ) = WORK( I1 )
  430:                WORK( I1 ) = PIV
  431: *
  432: *              Swap A(I1+1:N, I1) with A(I2, I1+1:N)
  433: *
  434:                I1 = I1+J-1
  435:                I2 = I2+J-1
  436:                CALL ZSWAP( I2-I1-1, A( I1+1, J1+I1-1 ), 1,
  437:      $                              A( I2, J1+I1 ), LDA )
  438:                CALL ZLACGV( I2-I1, A( I1+1, J1+I1-1 ), 1 )
  439:                CALL ZLACGV( I2-I1-1, A( I2, J1+I1 ), LDA )
  440: *
  441: *              Swap A(I2+1:N, I1) with A(I2+1:N, I2)
  442: *
  443:                IF( I2.LT.M )
  444:      $            CALL ZSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
  445:      $                              A( I2+1, J1+I2-1 ), 1 )
  446: *
  447: *              Swap A(I1, I1) with A(I2, I2)
  448: *
  449:                PIV = A( I1, J1+I1-1 )
  450:                A( I1, J1+I1-1 ) = A( I2, J1+I2-1 )
  451:                A( I2, J1+I2-1 ) = PIV
  452: *
  453: *              Swap H(I1, I1:J1) with H(I2, I2:J1)
  454: *
  455:                CALL ZSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
  456:                IPIV( I1 ) = I2
  457: *
  458:                IF( I1.GT.(K1-1) ) THEN
  459: *
  460: *                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
  461: *                  skipping the first column
  462: *
  463:                   CALL ZSWAP( I1-K1+1, A( I1, 1 ), LDA,
  464:      $                                 A( I2, 1 ), LDA )
  465:                END IF
  466:             ELSE
  467:                IPIV( J+1 ) = J+1
  468:             ENDIF
  469: *
  470: *           Set A(J+1, J) = T(J+1, J)
  471: *
  472:             A( J+1, K ) = WORK( 2 )
  473: *
  474:             IF( J.LT.NB ) THEN
  475: *
  476: *              Copy A(J+1:N, J+1) into H(J+1:N, J),
  477: *
  478:                CALL ZCOPY( M-J, A( J+1, K+1 ), 1,
  479:      $                          H( J+1, J+1 ), 1 )
  480:             END IF
  481: *
  482: *           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1),
  483: *            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1)
  484: *
  485:             IF( J.LT.(M-1) ) THEN
  486:                IF( A( J+1, K ).NE.ZERO ) THEN
  487:                   ALPHA = ONE / A( J+1, K )
  488:                   CALL ZCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
  489:                   CALL ZSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
  490:                ELSE
  491:                   CALL ZLASET( 'Full', M-J-1, 1, ZERO, ZERO,
  492:      $                         A( J+2, K ), LDA )
  493:                END IF
  494:             END IF
  495:          END IF
  496:          J = J + 1
  497:          GO TO 30
  498:  40      CONTINUE
  499:       END IF
  500:       RETURN
  501: *
  502: *     End of ZLAHEF_AA
  503: *
  504:       END

CVSweb interface <joel.bertrand@systella.fr>