File:  [local] / rpl / lapack / lapack / zlahef.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:25 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAHEF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLAHEF computes a partial factorization of a complex Hermitian
   39: *> matrix A using the Bunch-Kaufman diagonal pivoting method. The
   40: *> partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0      I     )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *> Note that U**H denotes the conjugate transpose of U.
   51: *>
   52: *> ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code
   53: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
   54: *> A22 (if UPLO = 'L').
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] UPLO
   61: *> \verbatim
   62: *>          UPLO is CHARACTER*1
   63: *>          Specifies whether the upper or lower triangular part of the
   64: *>          Hermitian matrix A is stored:
   65: *>          = 'U':  Upper triangular
   66: *>          = 'L':  Lower triangular
   67: *> \endverbatim
   68: *>
   69: *> \param[in] N
   70: *> \verbatim
   71: *>          N is INTEGER
   72: *>          The order of the matrix A.  N >= 0.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] NB
   76: *> \verbatim
   77: *>          NB is INTEGER
   78: *>          The maximum number of columns of the matrix A that should be
   79: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   80: *>          blocks.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] KB
   84: *> \verbatim
   85: *>          KB is INTEGER
   86: *>          The number of columns of A that were actually factored.
   87: *>          KB is either NB-1 or NB, or N if N <= NB.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] A
   91: *> \verbatim
   92: *>          A is COMPLEX*16 array, dimension (LDA,N)
   93: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   94: *>          n-by-n upper triangular part of A contains the upper
   95: *>          triangular part of the matrix A, and the strictly lower
   96: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   97: *>          leading n-by-n lower triangular part of A contains the lower
   98: *>          triangular part of the matrix A, and the strictly upper
   99: *>          triangular part of A is not referenced.
  100: *>          On exit, A contains details of the partial factorization.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] IPIV
  110: *> \verbatim
  111: *>          IPIV is INTEGER array, dimension (N)
  112: *>          Details of the interchanges and the block structure of D.
  113: *>
  114: *>          If UPLO = 'U':
  115: *>             Only the last KB elements of IPIV are set.
  116: *>
  117: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  118: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  119: *>
  120: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  121: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  122: *>             is a 2-by-2 diagonal block.
  123: *>
  124: *>          If UPLO = 'L':
  125: *>             Only the first KB elements of IPIV are set.
  126: *>
  127: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  128: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  129: *>
  130: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  131: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  132: *>             is a 2-by-2 diagonal block.
  133: *> \endverbatim
  134: *>
  135: *> \param[out] W
  136: *> \verbatim
  137: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  138: *> \endverbatim
  139: *>
  140: *> \param[in] LDW
  141: *> \verbatim
  142: *>          LDW is INTEGER
  143: *>          The leading dimension of the array W.  LDW >= max(1,N).
  144: *> \endverbatim
  145: *>
  146: *> \param[out] INFO
  147: *> \verbatim
  148: *>          INFO is INTEGER
  149: *>          = 0: successful exit
  150: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  151: *>               has been completed, but the block diagonal matrix D is
  152: *>               exactly singular.
  153: *> \endverbatim
  154: *
  155: *  Authors:
  156: *  ========
  157: *
  158: *> \author Univ. of Tennessee
  159: *> \author Univ. of California Berkeley
  160: *> \author Univ. of Colorado Denver
  161: *> \author NAG Ltd.
  162: *
  163: *> \date December 2016
  164: *
  165: *> \ingroup complex16HEcomputational
  166: *
  167: *> \par Contributors:
  168: *  ==================
  169: *>
  170: *> \verbatim
  171: *>
  172: *>  December 2016,  Igor Kozachenko,
  173: *>                  Computer Science Division,
  174: *>                  University of California, Berkeley
  175: *> \endverbatim
  176: *
  177: *  =====================================================================
  178:       SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  179: *
  180: *  -- LAPACK computational routine (version 3.7.0) --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *     December 2016
  184: *
  185: *     .. Scalar Arguments ..
  186:       CHARACTER          UPLO
  187:       INTEGER            INFO, KB, LDA, LDW, N, NB
  188: *     ..
  189: *     .. Array Arguments ..
  190:       INTEGER            IPIV( * )
  191:       COMPLEX*16         A( LDA, * ), W( LDW, * )
  192: *     ..
  193: *
  194: *  =====================================================================
  195: *
  196: *     .. Parameters ..
  197:       DOUBLE PRECISION   ZERO, ONE
  198:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  199:       COMPLEX*16         CONE
  200:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  201:       DOUBLE PRECISION   EIGHT, SEVTEN
  202:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  203: *     ..
  204: *     .. Local Scalars ..
  205:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  206:      $                   KSTEP, KW
  207:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, R1, ROWMAX, T
  208:       COMPLEX*16         D11, D21, D22, Z
  209: *     ..
  210: *     .. External Functions ..
  211:       LOGICAL            LSAME
  212:       INTEGER            IZAMAX
  213:       EXTERNAL           LSAME, IZAMAX
  214: *     ..
  215: *     .. External Subroutines ..
  216:       EXTERNAL           ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
  217: *     ..
  218: *     .. Intrinsic Functions ..
  219:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
  220: *     ..
  221: *     .. Statement Functions ..
  222:       DOUBLE PRECISION   CABS1
  223: *     ..
  224: *     .. Statement Function definitions ..
  225:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  226: *     ..
  227: *     .. Executable Statements ..
  228: *
  229:       INFO = 0
  230: *
  231: *     Initialize ALPHA for use in choosing pivot block size.
  232: *
  233:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  234: *
  235:       IF( LSAME( UPLO, 'U' ) ) THEN
  236: *
  237: *        Factorize the trailing columns of A using the upper triangle
  238: *        of A and working backwards, and compute the matrix W = U12*D
  239: *        for use in updating A11 (note that conjg(W) is actually stored)
  240: *
  241: *        K is the main loop index, decreasing from N in steps of 1 or 2
  242: *
  243: *        KW is the column of W which corresponds to column K of A
  244: *
  245:          K = N
  246:    10    CONTINUE
  247:          KW = NB + K - N
  248: *
  249: *        Exit from loop
  250: *
  251:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  252:      $      GO TO 30
  253: *
  254:          KSTEP = 1
  255: *
  256: *        Copy column K of A to column KW of W and update it
  257: *
  258:          CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
  259:          W( K, KW ) = DBLE( A( K, K ) )
  260:          IF( K.LT.N ) THEN
  261:             CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  262:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  263:             W( K, KW ) = DBLE( W( K, KW ) )
  264:          END IF
  265: *
  266: *        Determine rows and columns to be interchanged and whether
  267: *        a 1-by-1 or 2-by-2 pivot block will be used
  268: *
  269:          ABSAKK = ABS( DBLE( W( K, KW ) ) )
  270: *
  271: *        IMAX is the row-index of the largest off-diagonal element in
  272: *        column K, and COLMAX is its absolute value.
  273: *        Determine both COLMAX and IMAX.
  274: *
  275:          IF( K.GT.1 ) THEN
  276:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  277:             COLMAX = CABS1( W( IMAX, KW ) )
  278:          ELSE
  279:             COLMAX = ZERO
  280:          END IF
  281: *
  282:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  283: *
  284: *           Column K is zero or underflow: set INFO and continue
  285: *
  286:             IF( INFO.EQ.0 )
  287:      $         INFO = K
  288:             KP = K
  289:             A( K, K ) = DBLE( A( K, K ) )
  290:          ELSE
  291: *
  292: *           ============================================================
  293: *
  294: *           BEGIN pivot search
  295: *
  296: *           Case(1)
  297:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  298: *
  299: *              no interchange, use 1-by-1 pivot block
  300: *
  301:                KP = K
  302:             ELSE
  303: *
  304: *              BEGIN pivot search along IMAX row
  305: *
  306: *
  307: *              Copy column IMAX to column KW-1 of W and update it
  308: *
  309:                CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  310:                W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
  311:                CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  312:      $                     W( IMAX+1, KW-1 ), 1 )
  313:                CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  314:                IF( K.LT.N ) THEN
  315:                   CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  316:      $                        A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  317:      $                        CONE, W( 1, KW-1 ), 1 )
  318:                   W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
  319:                END IF
  320: *
  321: *              JMAX is the column-index of the largest off-diagonal
  322: *              element in row IMAX, and ROWMAX is its absolute value.
  323: *              Determine only ROWMAX.
  324: *
  325:                JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  326:                ROWMAX = CABS1( W( JMAX, KW-1 ) )
  327:                IF( IMAX.GT.1 ) THEN
  328:                   JMAX = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  329:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
  330:                END IF
  331: *
  332: *              Case(2)
  333:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  334: *
  335: *                 no interchange, use 1-by-1 pivot block
  336: *
  337:                   KP = K
  338: *
  339: *              Case(3)
  340:                ELSE IF( ABS( DBLE( W( IMAX, KW-1 ) ) ).GE.ALPHA*ROWMAX )
  341:      $                   THEN
  342: *
  343: *                 interchange rows and columns K and IMAX, use 1-by-1
  344: *                 pivot block
  345: *
  346:                   KP = IMAX
  347: *
  348: *                 copy column KW-1 of W to column KW of W
  349: *
  350:                   CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  351: *
  352: *              Case(4)
  353:                ELSE
  354: *
  355: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  356: *                 pivot block
  357: *
  358:                   KP = IMAX
  359:                   KSTEP = 2
  360:                END IF
  361: *
  362: *
  363: *              END pivot search along IMAX row
  364: *
  365:             END IF
  366: *
  367: *           END pivot search
  368: *
  369: *           ============================================================
  370: *
  371: *           KK is the column of A where pivoting step stopped
  372: *
  373:             KK = K - KSTEP + 1
  374: *
  375: *           KKW is the column of W which corresponds to column KK of A
  376: *
  377:             KKW = NB + KK - N
  378: *
  379: *           Interchange rows and columns KP and KK.
  380: *           Updated column KP is already stored in column KKW of W.
  381: *
  382:             IF( KP.NE.KK ) THEN
  383: *
  384: *              Copy non-updated column KK to column KP of submatrix A
  385: *              at step K. No need to copy element into column K
  386: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  387: *              will be later overwritten.
  388: *
  389:                A( KP, KP ) = DBLE( A( KK, KK ) )
  390:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  391:      $                     LDA )
  392:                CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
  393:                IF( KP.GT.1 )
  394:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  395: *
  396: *              Interchange rows KK and KP in last K+1 to N columns of A
  397: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  398: *              later overwritten). Interchange rows KK and KP
  399: *              in last KKW to NB columns of W.
  400: *
  401:                IF( K.LT.N )
  402:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  403:      $                        LDA )
  404:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  405:      $                     LDW )
  406:             END IF
  407: *
  408:             IF( KSTEP.EQ.1 ) THEN
  409: *
  410: *              1-by-1 pivot block D(k): column kw of W now holds
  411: *
  412: *              W(kw) = U(k)*D(k),
  413: *
  414: *              where U(k) is the k-th column of U
  415: *
  416: *              (1) Store subdiag. elements of column U(k)
  417: *              and 1-by-1 block D(k) in column k of A.
  418: *              (NOTE: Diagonal element U(k,k) is a UNIT element
  419: *              and not stored)
  420: *                 A(k,k) := D(k,k) = W(k,kw)
  421: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  422: *
  423: *              (NOTE: No need to use for Hermitian matrix
  424: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
  425: *              element D(k,k) from W (potentially saves only one load))
  426:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  427:                IF( K.GT.1 ) THEN
  428: *
  429: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  430: *                  since that was ensured earlier in pivot search:
  431: *                  case A(k,k) = 0 falls into 2x2 pivot case(4))
  432: *
  433:                   R1 = ONE / DBLE( A( K, K ) )
  434:                   CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  435: *
  436: *                 (2) Conjugate column W(kw)
  437: *
  438:                   CALL ZLACGV( K-1, W( 1, KW ), 1 )
  439:                END IF
  440: *
  441:             ELSE
  442: *
  443: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  444: *
  445: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  446: *
  447: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  448: *              of U
  449: *
  450: *              (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  451: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  452: *              (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  453: *              block and not stored)
  454: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  455: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  456: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  457: *
  458:                IF( K.GT.2 ) THEN
  459: *
  460: *                 Factor out the columns of the inverse of 2-by-2 pivot
  461: *                 block D, so that each column contains 1, to reduce the
  462: *                 number of FLOPS when we multiply panel
  463: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
  464: *
  465: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
  466: *                           ( d21    d22 )
  467: *
  468: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
  469: *                                          ( (-d21) (     d11 ) )
  470: *
  471: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
  472: *
  473: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
  474: *                     (     (      -1 )           ( d11/conj(d21) ) )
  475: *
  476: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
  477: *
  478: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  479: *                     (     (  -1 )           ( D22 ) )
  480: *
  481: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  482: *                                      (     (  -1 )           ( D22 ) )
  483: *
  484: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
  485: *                   (               (  -1 )         ( D22 ) )
  486: *
  487: *                 = ( conj(D21)*( D11 ) D21*(  -1 ) )
  488: *                   (           (  -1 )     ( D22 ) ),
  489: *
  490: *                 where D11 = d22/d21,
  491: *                       D22 = d11/conj(d21),
  492: *                       D21 = T/d21,
  493: *                       T = 1/(D22*D11-1).
  494: *
  495: *                 (NOTE: No need to check for division by ZERO,
  496: *                  since that was ensured earlier in pivot search:
  497: *                  (a) d21 != 0, since in 2x2 pivot case(4)
  498: *                      |d21| should be larger than |d11| and |d22|;
  499: *                  (b) (D22*D11 - 1) != 0, since from (a),
  500: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
  501: *
  502:                   D21 = W( K-1, KW )
  503:                   D11 = W( K, KW ) / DCONJG( D21 )
  504:                   D22 = W( K-1, KW-1 ) / D21
  505:                   T = ONE / ( DBLE( D11*D22 )-ONE )
  506:                   D21 = T / D21
  507: *
  508: *                 Update elements in columns A(k-1) and A(k) as
  509: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  510: *                 of D**(-1)
  511: *
  512:                   DO 20 J = 1, K - 2
  513:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  514:                      A( J, K ) = DCONJG( D21 )*
  515:      $                           ( D22*W( J, KW )-W( J, KW-1 ) )
  516:    20             CONTINUE
  517:                END IF
  518: *
  519: *              Copy D(k) to A
  520: *
  521:                A( K-1, K-1 ) = W( K-1, KW-1 )
  522:                A( K-1, K ) = W( K-1, KW )
  523:                A( K, K ) = W( K, KW )
  524: *
  525: *              (2) Conjugate columns W(kw) and W(kw-1)
  526: *
  527:                CALL ZLACGV( K-1, W( 1, KW ), 1 )
  528:                CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
  529: *
  530:             END IF
  531: *
  532:          END IF
  533: *
  534: *        Store details of the interchanges in IPIV
  535: *
  536:          IF( KSTEP.EQ.1 ) THEN
  537:             IPIV( K ) = KP
  538:          ELSE
  539:             IPIV( K ) = -KP
  540:             IPIV( K-1 ) = -KP
  541:          END IF
  542: *
  543: *        Decrease K and return to the start of the main loop
  544: *
  545:          K = K - KSTEP
  546:          GO TO 10
  547: *
  548:    30    CONTINUE
  549: *
  550: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  551: *
  552: *        A11 := A11 - U12*D*U12**H = A11 - U12*W**H
  553: *
  554: *        computing blocks of NB columns at a time (note that conjg(W) is
  555: *        actually stored)
  556: *
  557:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  558:             JB = MIN( NB, K-J+1 )
  559: *
  560: *           Update the upper triangle of the diagonal block
  561: *
  562:             DO 40 JJ = J, J + JB - 1
  563:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  564:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  565:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  566:      $                     A( J, JJ ), 1 )
  567:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  568:    40       CONTINUE
  569: *
  570: *           Update the rectangular superdiagonal block
  571: *
  572:             CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  573:      $                  -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  574:      $                  CONE, A( 1, J ), LDA )
  575:    50    CONTINUE
  576: *
  577: *        Put U12 in standard form by partially undoing the interchanges
  578: *        in columns k+1:n looping backwards from k+1 to n
  579: *
  580:          J = K + 1
  581:    60    CONTINUE
  582: *
  583: *           Undo the interchanges (if any) of rows JJ and JP at each
  584: *           step J
  585: *
  586: *           (Here, J is a diagonal index)
  587:             JJ = J
  588:             JP = IPIV( J )
  589:             IF( JP.LT.0 ) THEN
  590:                JP = -JP
  591: *              (Here, J is a diagonal index)
  592:                J = J + 1
  593:             END IF
  594: *           (NOTE: Here, J is used to determine row length. Length N-J+1
  595: *           of the rows to swap back doesn't include diagonal element)
  596:             J = J + 1
  597:             IF( JP.NE.JJ .AND. J.LE.N )
  598:      $         CALL ZSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  599:          IF( J.LT.N )
  600:      $      GO TO 60
  601: *
  602: *        Set KB to the number of columns factorized
  603: *
  604:          KB = N - K
  605: *
  606:       ELSE
  607: *
  608: *        Factorize the leading columns of A using the lower triangle
  609: *        of A and working forwards, and compute the matrix W = L21*D
  610: *        for use in updating A22 (note that conjg(W) is actually stored)
  611: *
  612: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  613: *
  614:          K = 1
  615:    70    CONTINUE
  616: *
  617: *        Exit from loop
  618: *
  619:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  620:      $      GO TO 90
  621: *
  622:          KSTEP = 1
  623: *
  624: *        Copy column K of A to column K of W and update it
  625: *
  626:          W( K, K ) = DBLE( A( K, K ) )
  627:          IF( K.LT.N )
  628:      $      CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
  629:          CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
  630:      $               W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  631:          W( K, K ) = DBLE( W( K, K ) )
  632: *
  633: *        Determine rows and columns to be interchanged and whether
  634: *        a 1-by-1 or 2-by-2 pivot block will be used
  635: *
  636:          ABSAKK = ABS( DBLE( W( K, K ) ) )
  637: *
  638: *        IMAX is the row-index of the largest off-diagonal element in
  639: *        column K, and COLMAX is its absolute value.
  640: *        Determine both COLMAX and IMAX.
  641: *
  642:          IF( K.LT.N ) THEN
  643:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  644:             COLMAX = CABS1( W( IMAX, K ) )
  645:          ELSE
  646:             COLMAX = ZERO
  647:          END IF
  648: *
  649:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  650: *
  651: *           Column K is zero or underflow: set INFO and continue
  652: *
  653:             IF( INFO.EQ.0 )
  654:      $         INFO = K
  655:             KP = K
  656:             A( K, K ) = DBLE( A( K, K ) )
  657:          ELSE
  658: *
  659: *           ============================================================
  660: *
  661: *           BEGIN pivot search
  662: *
  663: *           Case(1)
  664:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  665: *
  666: *              no interchange, use 1-by-1 pivot block
  667: *
  668:                KP = K
  669:             ELSE
  670: *
  671: *              BEGIN pivot search along IMAX row
  672: *
  673: *
  674: *              Copy column IMAX to column K+1 of W and update it
  675: *
  676:                CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  677:                CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
  678:                W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
  679:                IF( IMAX.LT.N )
  680:      $            CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
  681:      $                        W( IMAX+1, K+1 ), 1 )
  682:                CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  683:      $                     LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
  684:      $                     1 )
  685:                W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
  686: *
  687: *              JMAX is the column-index of the largest off-diagonal
  688: *              element in row IMAX, and ROWMAX is its absolute value.
  689: *              Determine only ROWMAX.
  690: *
  691:                JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  692:                ROWMAX = CABS1( W( JMAX, K+1 ) )
  693:                IF( IMAX.LT.N ) THEN
  694:                   JMAX = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  695:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
  696:                END IF
  697: *
  698: *              Case(2)
  699:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  700: *
  701: *                 no interchange, use 1-by-1 pivot block
  702: *
  703:                   KP = K
  704: *
  705: *              Case(3)
  706:                ELSE IF( ABS( DBLE( W( IMAX, K+1 ) ) ).GE.ALPHA*ROWMAX )
  707:      $                   THEN
  708: *
  709: *                 interchange rows and columns K and IMAX, use 1-by-1
  710: *                 pivot block
  711: *
  712:                   KP = IMAX
  713: *
  714: *                 copy column K+1 of W to column K of W
  715: *
  716:                   CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  717: *
  718: *              Case(4)
  719:                ELSE
  720: *
  721: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  722: *                 pivot block
  723: *
  724:                   KP = IMAX
  725:                   KSTEP = 2
  726:                END IF
  727: *
  728: *
  729: *              END pivot search along IMAX row
  730: *
  731:             END IF
  732: *
  733: *           END pivot search
  734: *
  735: *           ============================================================
  736: *
  737: *           KK is the column of A where pivoting step stopped
  738: *
  739:             KK = K + KSTEP - 1
  740: *
  741: *           Interchange rows and columns KP and KK.
  742: *           Updated column KP is already stored in column KK of W.
  743: *
  744:             IF( KP.NE.KK ) THEN
  745: *
  746: *              Copy non-updated column KK to column KP of submatrix A
  747: *              at step K. No need to copy element into column K
  748: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
  749: *              will be later overwritten.
  750: *
  751:                A( KP, KP ) = DBLE( A( KK, KK ) )
  752:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  753:      $                     LDA )
  754:                CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
  755:                IF( KP.LT.N )
  756:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  757: *
  758: *              Interchange rows KK and KP in first K-1 columns of A
  759: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
  760: *              later overwritten). Interchange rows KK and KP
  761: *              in first KK columns of W.
  762: *
  763:                IF( K.GT.1 )
  764:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  765:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  766:             END IF
  767: *
  768:             IF( KSTEP.EQ.1 ) THEN
  769: *
  770: *              1-by-1 pivot block D(k): column k of W now holds
  771: *
  772: *              W(k) = L(k)*D(k),
  773: *
  774: *              where L(k) is the k-th column of L
  775: *
  776: *              (1) Store subdiag. elements of column L(k)
  777: *              and 1-by-1 block D(k) in column k of A.
  778: *              (NOTE: Diagonal element L(k,k) is a UNIT element
  779: *              and not stored)
  780: *                 A(k,k) := D(k,k) = W(k,k)
  781: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
  782: *
  783: *              (NOTE: No need to use for Hermitian matrix
  784: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
  785: *              element D(k,k) from W (potentially saves only one load))
  786:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  787:                IF( K.LT.N ) THEN
  788: *
  789: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  790: *                  since that was ensured earlier in pivot search:
  791: *                  case A(k,k) = 0 falls into 2x2 pivot case(4))
  792: *
  793:                   R1 = ONE / DBLE( A( K, K ) )
  794:                   CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  795: *
  796: *                 (2) Conjugate column W(k)
  797: *
  798:                   CALL ZLACGV( N-K, W( K+1, K ), 1 )
  799:                END IF
  800: *
  801:             ELSE
  802: *
  803: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  804: *
  805: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  806: *
  807: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  808: *              of L
  809: *
  810: *              (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
  811: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
  812: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
  813: *              block and not stored)
  814: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
  815: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
  816: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
  817: *
  818:                IF( K.LT.N-1 ) THEN
  819: *
  820: *                 Factor out the columns of the inverse of 2-by-2 pivot
  821: *                 block D, so that each column contains 1, to reduce the
  822: *                 number of FLOPS when we multiply panel
  823: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
  824: *
  825: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
  826: *                           ( d21    d22 )
  827: *
  828: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
  829: *                                          ( (-d21) (     d11 ) )
  830: *
  831: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
  832: *
  833: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
  834: *                     (     (      -1 )           ( d11/conj(d21) ) )
  835: *
  836: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
  837: *
  838: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  839: *                     (     (  -1 )           ( D22 ) )
  840: *
  841: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  842: *                                      (     (  -1 )           ( D22 ) )
  843: *
  844: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
  845: *                   (               (  -1 )         ( D22 ) )
  846: *
  847: *                 = ( conj(D21)*( D11 ) D21*(  -1 ) )
  848: *                   (           (  -1 )     ( D22 ) ),
  849: *
  850: *                 where D11 = d22/d21,
  851: *                       D22 = d11/conj(d21),
  852: *                       D21 = T/d21,
  853: *                       T = 1/(D22*D11-1).
  854: *
  855: *                 (NOTE: No need to check for division by ZERO,
  856: *                  since that was ensured earlier in pivot search:
  857: *                  (a) d21 != 0, since in 2x2 pivot case(4)
  858: *                      |d21| should be larger than |d11| and |d22|;
  859: *                  (b) (D22*D11 - 1) != 0, since from (a),
  860: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
  861: *
  862:                   D21 = W( K+1, K )
  863:                   D11 = W( K+1, K+1 ) / D21
  864:                   D22 = W( K, K ) / DCONJG( D21 )
  865:                   T = ONE / ( DBLE( D11*D22 )-ONE )
  866:                   D21 = T / D21
  867: *
  868: *                 Update elements in columns A(k) and A(k+1) as
  869: *                 dot products of rows of ( W(k) W(k+1) ) and columns
  870: *                 of D**(-1)
  871: *
  872:                   DO 80 J = K + 2, N
  873:                      A( J, K ) = DCONJG( D21 )*
  874:      $                           ( D11*W( J, K )-W( J, K+1 ) )
  875:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  876:    80             CONTINUE
  877:                END IF
  878: *
  879: *              Copy D(k) to A
  880: *
  881:                A( K, K ) = W( K, K )
  882:                A( K+1, K ) = W( K+1, K )
  883:                A( K+1, K+1 ) = W( K+1, K+1 )
  884: *
  885: *              (2) Conjugate columns W(k) and W(k+1)
  886: *
  887:                CALL ZLACGV( N-K, W( K+1, K ), 1 )
  888:                CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
  889: *
  890:             END IF
  891: *
  892:          END IF
  893: *
  894: *        Store details of the interchanges in IPIV
  895: *
  896:          IF( KSTEP.EQ.1 ) THEN
  897:             IPIV( K ) = KP
  898:          ELSE
  899:             IPIV( K ) = -KP
  900:             IPIV( K+1 ) = -KP
  901:          END IF
  902: *
  903: *        Increase K and return to the start of the main loop
  904: *
  905:          K = K + KSTEP
  906:          GO TO 70
  907: *
  908:    90    CONTINUE
  909: *
  910: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  911: *
  912: *        A22 := A22 - L21*D*L21**H = A22 - L21*W**H
  913: *
  914: *        computing blocks of NB columns at a time (note that conjg(W) is
  915: *        actually stored)
  916: *
  917:          DO 110 J = K, N, NB
  918:             JB = MIN( NB, N-J+1 )
  919: *
  920: *           Update the lower triangle of the diagonal block
  921: *
  922:             DO 100 JJ = J, J + JB - 1
  923:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  924:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  925:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  926:      $                     A( JJ, JJ ), 1 )
  927:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  928:   100       CONTINUE
  929: *
  930: *           Update the rectangular subdiagonal block
  931: *
  932:             IF( J+JB.LE.N )
  933:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  934:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  935:      $                     LDW, CONE, A( J+JB, J ), LDA )
  936:   110    CONTINUE
  937: *
  938: *        Put L21 in standard form by partially undoing the interchanges
  939: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
  940: *
  941:          J = K - 1
  942:   120    CONTINUE
  943: *
  944: *           Undo the interchanges (if any) of rows JJ and JP at each
  945: *           step J
  946: *
  947: *           (Here, J is a diagonal index)
  948:             JJ = J
  949:             JP = IPIV( J )
  950:             IF( JP.LT.0 ) THEN
  951:                JP = -JP
  952: *              (Here, J is a diagonal index)
  953:                J = J - 1
  954:             END IF
  955: *           (NOTE: Here, J is used to determine row length. Length J
  956: *           of the rows to swap back doesn't include diagonal element)
  957:             J = J - 1
  958:             IF( JP.NE.JJ .AND. J.GE.1 )
  959:      $         CALL ZSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  960:          IF( J.GT.1 )
  961:      $      GO TO 120
  962: *
  963: *        Set KB to the number of columns factorized
  964: *
  965:          KB = K - 1
  966: *
  967:       END IF
  968:       RETURN
  969: *
  970: *     End of ZLAHEF
  971: *
  972:       END

CVSweb interface <joel.bertrand@systella.fr>