File:  [local] / rpl / lapack / lapack / zlagtm.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:19 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAGTM + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlagtm.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlagtm.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlagtm.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
   22: *                          B, LDB )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          TRANS
   26: *       INTEGER            LDB, LDX, N, NRHS
   27: *       DOUBLE PRECISION   ALPHA, BETA
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * ),
   31: *      $                   X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZLAGTM performs a matrix-vector product of the form
   41: *>
   42: *>    B := alpha * A * X + beta * B
   43: *>
   44: *> where A is a tridiagonal matrix of order N, B and X are N by NRHS
   45: *> matrices, and alpha and beta are real scalars, each of which may be
   46: *> 0., 1., or -1.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] TRANS
   53: *> \verbatim
   54: *>          TRANS is CHARACTER*1
   55: *>          Specifies the operation applied to A.
   56: *>          = 'N':  No transpose, B := alpha * A * X + beta * B
   57: *>          = 'T':  Transpose,    B := alpha * A**T * X + beta * B
   58: *>          = 'C':  Conjugate transpose, B := alpha * A**H * X + beta * B
   59: *> \endverbatim
   60: *>
   61: *> \param[in] N
   62: *> \verbatim
   63: *>          N is INTEGER
   64: *>          The order of the matrix A.  N >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] NRHS
   68: *> \verbatim
   69: *>          NRHS is INTEGER
   70: *>          The number of right hand sides, i.e., the number of columns
   71: *>          of the matrices X and B.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] ALPHA
   75: *> \verbatim
   76: *>          ALPHA is DOUBLE PRECISION
   77: *>          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise,
   78: *>          it is assumed to be 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] DL
   82: *> \verbatim
   83: *>          DL is COMPLEX*16 array, dimension (N-1)
   84: *>          The (n-1) sub-diagonal elements of T.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] D
   88: *> \verbatim
   89: *>          D is COMPLEX*16 array, dimension (N)
   90: *>          The diagonal elements of T.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] DU
   94: *> \verbatim
   95: *>          DU is COMPLEX*16 array, dimension (N-1)
   96: *>          The (n-1) super-diagonal elements of T.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] X
  100: *> \verbatim
  101: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  102: *>          The N by NRHS matrix X.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LDX
  106: *> \verbatim
  107: *>          LDX is INTEGER
  108: *>          The leading dimension of the array X.  LDX >= max(N,1).
  109: *> \endverbatim
  110: *>
  111: *> \param[in] BETA
  112: *> \verbatim
  113: *>          BETA is DOUBLE PRECISION
  114: *>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
  115: *>          it is assumed to be 1.
  116: *> \endverbatim
  117: *>
  118: *> \param[in,out] B
  119: *> \verbatim
  120: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  121: *>          On entry, the N by NRHS matrix B.
  122: *>          On exit, B is overwritten by the matrix expression
  123: *>          B := alpha * A * X + beta * B.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] LDB
  127: *> \verbatim
  128: *>          LDB is INTEGER
  129: *>          The leading dimension of the array B.  LDB >= max(N,1).
  130: *> \endverbatim
  131: *
  132: *  Authors:
  133: *  ========
  134: *
  135: *> \author Univ. of Tennessee
  136: *> \author Univ. of California Berkeley
  137: *> \author Univ. of Colorado Denver
  138: *> \author NAG Ltd.
  139: *
  140: *> \date December 2016
  141: *
  142: *> \ingroup complex16OTHERauxiliary
  143: *
  144: *  =====================================================================
  145:       SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
  146:      $                   B, LDB )
  147: *
  148: *  -- LAPACK auxiliary routine (version 3.7.0) --
  149: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  151: *     December 2016
  152: *
  153: *     .. Scalar Arguments ..
  154:       CHARACTER          TRANS
  155:       INTEGER            LDB, LDX, N, NRHS
  156:       DOUBLE PRECISION   ALPHA, BETA
  157: *     ..
  158: *     .. Array Arguments ..
  159:       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * ),
  160:      $                   X( LDX, * )
  161: *     ..
  162: *
  163: *  =====================================================================
  164: *
  165: *     .. Parameters ..
  166:       DOUBLE PRECISION   ONE, ZERO
  167:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  168: *     ..
  169: *     .. Local Scalars ..
  170:       INTEGER            I, J
  171: *     ..
  172: *     .. External Functions ..
  173:       LOGICAL            LSAME
  174:       EXTERNAL           LSAME
  175: *     ..
  176: *     .. Intrinsic Functions ..
  177:       INTRINSIC          DCONJG
  178: *     ..
  179: *     .. Executable Statements ..
  180: *
  181:       IF( N.EQ.0 )
  182:      $   RETURN
  183: *
  184: *     Multiply B by BETA if BETA.NE.1.
  185: *
  186:       IF( BETA.EQ.ZERO ) THEN
  187:          DO 20 J = 1, NRHS
  188:             DO 10 I = 1, N
  189:                B( I, J ) = ZERO
  190:    10       CONTINUE
  191:    20    CONTINUE
  192:       ELSE IF( BETA.EQ.-ONE ) THEN
  193:          DO 40 J = 1, NRHS
  194:             DO 30 I = 1, N
  195:                B( I, J ) = -B( I, J )
  196:    30       CONTINUE
  197:    40    CONTINUE
  198:       END IF
  199: *
  200:       IF( ALPHA.EQ.ONE ) THEN
  201:          IF( LSAME( TRANS, 'N' ) ) THEN
  202: *
  203: *           Compute B := B + A*X
  204: *
  205:             DO 60 J = 1, NRHS
  206:                IF( N.EQ.1 ) THEN
  207:                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
  208:                ELSE
  209:                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
  210:      $                        DU( 1 )*X( 2, J )
  211:                   B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
  212:      $                        D( N )*X( N, J )
  213:                   DO 50 I = 2, N - 1
  214:                      B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
  215:      $                           D( I )*X( I, J ) + DU( I )*X( I+1, J )
  216:    50             CONTINUE
  217:                END IF
  218:    60       CONTINUE
  219:          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  220: *
  221: *           Compute B := B + A**T * X
  222: *
  223:             DO 80 J = 1, NRHS
  224:                IF( N.EQ.1 ) THEN
  225:                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
  226:                ELSE
  227:                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
  228:      $                        DL( 1 )*X( 2, J )
  229:                   B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
  230:      $                        D( N )*X( N, J )
  231:                   DO 70 I = 2, N - 1
  232:                      B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
  233:      $                           D( I )*X( I, J ) + DL( I )*X( I+1, J )
  234:    70             CONTINUE
  235:                END IF
  236:    80       CONTINUE
  237:          ELSE IF( LSAME( TRANS, 'C' ) ) THEN
  238: *
  239: *           Compute B := B + A**H * X
  240: *
  241:             DO 100 J = 1, NRHS
  242:                IF( N.EQ.1 ) THEN
  243:                   B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J )
  244:                ELSE
  245:                   B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J ) +
  246:      $                        DCONJG( DL( 1 ) )*X( 2, J )
  247:                   B( N, J ) = B( N, J ) + DCONJG( DU( N-1 ) )*
  248:      $                        X( N-1, J ) + DCONJG( D( N ) )*X( N, J )
  249:                   DO 90 I = 2, N - 1
  250:                      B( I, J ) = B( I, J ) + DCONJG( DU( I-1 ) )*
  251:      $                           X( I-1, J ) + DCONJG( D( I ) )*
  252:      $                           X( I, J ) + DCONJG( DL( I ) )*
  253:      $                           X( I+1, J )
  254:    90             CONTINUE
  255:                END IF
  256:   100       CONTINUE
  257:          END IF
  258:       ELSE IF( ALPHA.EQ.-ONE ) THEN
  259:          IF( LSAME( TRANS, 'N' ) ) THEN
  260: *
  261: *           Compute B := B - A*X
  262: *
  263:             DO 120 J = 1, NRHS
  264:                IF( N.EQ.1 ) THEN
  265:                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
  266:                ELSE
  267:                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
  268:      $                        DU( 1 )*X( 2, J )
  269:                   B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
  270:      $                        D( N )*X( N, J )
  271:                   DO 110 I = 2, N - 1
  272:                      B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
  273:      $                           D( I )*X( I, J ) - DU( I )*X( I+1, J )
  274:   110             CONTINUE
  275:                END IF
  276:   120       CONTINUE
  277:          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  278: *
  279: *           Compute B := B - A**T *X
  280: *
  281:             DO 140 J = 1, NRHS
  282:                IF( N.EQ.1 ) THEN
  283:                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
  284:                ELSE
  285:                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
  286:      $                        DL( 1 )*X( 2, J )
  287:                   B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
  288:      $                        D( N )*X( N, J )
  289:                   DO 130 I = 2, N - 1
  290:                      B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
  291:      $                           D( I )*X( I, J ) - DL( I )*X( I+1, J )
  292:   130             CONTINUE
  293:                END IF
  294:   140       CONTINUE
  295:          ELSE IF( LSAME( TRANS, 'C' ) ) THEN
  296: *
  297: *           Compute B := B - A**H *X
  298: *
  299:             DO 160 J = 1, NRHS
  300:                IF( N.EQ.1 ) THEN
  301:                   B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J )
  302:                ELSE
  303:                   B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J ) -
  304:      $                        DCONJG( DL( 1 ) )*X( 2, J )
  305:                   B( N, J ) = B( N, J ) - DCONJG( DU( N-1 ) )*
  306:      $                        X( N-1, J ) - DCONJG( D( N ) )*X( N, J )
  307:                   DO 150 I = 2, N - 1
  308:                      B( I, J ) = B( I, J ) - DCONJG( DU( I-1 ) )*
  309:      $                           X( I-1, J ) - DCONJG( D( I ) )*
  310:      $                           X( I, J ) - DCONJG( DL( I ) )*
  311:      $                           X( I+1, J )
  312:   150             CONTINUE
  313:                END IF
  314:   160       CONTINUE
  315:          END IF
  316:       END IF
  317:       RETURN
  318: *
  319: *     End of ZLAGTM
  320: *
  321:       END

CVSweb interface <joel.bertrand@systella.fr>