Annotation of rpl/lapack/lapack/zlaesy.f, revision 1.17

1.12      bertrand    1: *> \brief \b ZLAESY computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZLAESY + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaesy.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaesy.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaesy.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       COMPLEX*16         A, B, C, CS1, EVSCAL, RT1, RT2, SN1
                     25: *       ..
1.16      bertrand   26: *
1.9       bertrand   27: *
                     28: *> \par Purpose:
                     29: *  =============
                     30: *>
                     31: *> \verbatim
                     32: *>
                     33: *> ZLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix
                     34: *>    ( ( A, B );( B, C ) )
                     35: *> provided the norm of the matrix of eigenvectors is larger than
                     36: *> some threshold value.
                     37: *>
                     38: *> RT1 is the eigenvalue of larger absolute value, and RT2 of
                     39: *> smaller absolute value.  If the eigenvectors are computed, then
                     40: *> on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence
                     41: *>
                     42: *> [  CS1     SN1   ] . [ A  B ] . [ CS1    -SN1   ] = [ RT1  0  ]
                     43: *> [ -SN1     CS1   ]   [ B  C ]   [ SN1     CS1   ]   [  0  RT2 ]
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] A
                     50: *> \verbatim
                     51: *>          A is COMPLEX*16
                     52: *>          The ( 1, 1 ) element of input matrix.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] B
                     56: *> \verbatim
                     57: *>          B is COMPLEX*16
                     58: *>          The ( 1, 2 ) element of input matrix.  The ( 2, 1 ) element
                     59: *>          is also given by B, since the 2-by-2 matrix is symmetric.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] C
                     63: *> \verbatim
                     64: *>          C is COMPLEX*16
                     65: *>          The ( 2, 2 ) element of input matrix.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[out] RT1
                     69: *> \verbatim
                     70: *>          RT1 is COMPLEX*16
                     71: *>          The eigenvalue of larger modulus.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[out] RT2
                     75: *> \verbatim
                     76: *>          RT2 is COMPLEX*16
                     77: *>          The eigenvalue of smaller modulus.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[out] EVSCAL
                     81: *> \verbatim
                     82: *>          EVSCAL is COMPLEX*16
                     83: *>          The complex value by which the eigenvector matrix was scaled
                     84: *>          to make it orthonormal.  If EVSCAL is zero, the eigenvectors
                     85: *>          were not computed.  This means one of two things:  the 2-by-2
                     86: *>          matrix could not be diagonalized, or the norm of the matrix
                     87: *>          of eigenvectors before scaling was larger than the threshold
                     88: *>          value THRESH (set below).
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] CS1
                     92: *> \verbatim
                     93: *>          CS1 is COMPLEX*16
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[out] SN1
                     97: *> \verbatim
                     98: *>          SN1 is COMPLEX*16
                     99: *>          If EVSCAL .NE. 0,  ( CS1, SN1 ) is the unit right eigenvector
                    100: *>          for RT1.
                    101: *> \endverbatim
                    102: *
                    103: *  Authors:
                    104: *  ========
                    105: *
1.16      bertrand  106: *> \author Univ. of Tennessee
                    107: *> \author Univ. of California Berkeley
                    108: *> \author Univ. of Colorado Denver
                    109: *> \author NAG Ltd.
1.9       bertrand  110: *
1.16      bertrand  111: *> \date December 2016
1.9       bertrand  112: *
                    113: *> \ingroup complex16SYauxiliary
                    114: *
                    115: *  =====================================================================
1.1       bertrand  116:       SUBROUTINE ZLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
                    117: *
1.16      bertrand  118: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  119: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    120: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.16      bertrand  121: *     December 2016
1.1       bertrand  122: *
                    123: *     .. Scalar Arguments ..
                    124:       COMPLEX*16         A, B, C, CS1, EVSCAL, RT1, RT2, SN1
                    125: *     ..
                    126: *
                    127: * =====================================================================
                    128: *
                    129: *     .. Parameters ..
                    130:       DOUBLE PRECISION   ZERO
                    131:       PARAMETER          ( ZERO = 0.0D0 )
                    132:       DOUBLE PRECISION   ONE
                    133:       PARAMETER          ( ONE = 1.0D0 )
                    134:       COMPLEX*16         CONE
                    135:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
                    136:       DOUBLE PRECISION   HALF
                    137:       PARAMETER          ( HALF = 0.5D0 )
                    138:       DOUBLE PRECISION   THRESH
                    139:       PARAMETER          ( THRESH = 0.1D0 )
                    140: *     ..
                    141: *     .. Local Scalars ..
                    142:       DOUBLE PRECISION   BABS, EVNORM, TABS, Z
                    143:       COMPLEX*16         S, T, TMP
                    144: *     ..
                    145: *     .. Intrinsic Functions ..
                    146:       INTRINSIC          ABS, MAX, SQRT
                    147: *     ..
                    148: *     .. Executable Statements ..
                    149: *
                    150: *
                    151: *     Special case:  The matrix is actually diagonal.
                    152: *     To avoid divide by zero later, we treat this case separately.
                    153: *
                    154:       IF( ABS( B ).EQ.ZERO ) THEN
                    155:          RT1 = A
                    156:          RT2 = C
                    157:          IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
                    158:             TMP = RT1
                    159:             RT1 = RT2
                    160:             RT2 = TMP
                    161:             CS1 = ZERO
                    162:             SN1 = ONE
                    163:          ELSE
                    164:             CS1 = ONE
                    165:             SN1 = ZERO
                    166:          END IF
                    167:       ELSE
                    168: *
                    169: *        Compute the eigenvalues and eigenvectors.
                    170: *        The characteristic equation is
                    171: *           lambda **2 - (A+C) lambda + (A*C - B*B)
                    172: *        and we solve it using the quadratic formula.
                    173: *
                    174:          S = ( A+C )*HALF
                    175:          T = ( A-C )*HALF
                    176: *
                    177: *        Take the square root carefully to avoid over/under flow.
                    178: *
                    179:          BABS = ABS( B )
                    180:          TABS = ABS( T )
                    181:          Z = MAX( BABS, TABS )
                    182:          IF( Z.GT.ZERO )
                    183:      $      T = Z*SQRT( ( T / Z )**2+( B / Z )**2 )
                    184: *
                    185: *        Compute the two eigenvalues.  RT1 and RT2 are exchanged
                    186: *        if necessary so that RT1 will have the greater magnitude.
                    187: *
                    188:          RT1 = S + T
                    189:          RT2 = S - T
                    190:          IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
                    191:             TMP = RT1
                    192:             RT1 = RT2
                    193:             RT2 = TMP
                    194:          END IF
                    195: *
                    196: *        Choose CS1 = 1 and SN1 to satisfy the first equation, then
                    197: *        scale the components of this eigenvector so that the matrix
1.8       bertrand  198: *        of eigenvectors X satisfies  X * X**T = I .  (No scaling is
1.1       bertrand  199: *        done if the norm of the eigenvalue matrix is less than THRESH.)
                    200: *
                    201:          SN1 = ( RT1-A ) / B
                    202:          TABS = ABS( SN1 )
                    203:          IF( TABS.GT.ONE ) THEN
                    204:             T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 )
                    205:          ELSE
                    206:             T = SQRT( CONE+SN1*SN1 )
                    207:          END IF
                    208:          EVNORM = ABS( T )
                    209:          IF( EVNORM.GE.THRESH ) THEN
                    210:             EVSCAL = CONE / T
                    211:             CS1 = EVSCAL
                    212:             SN1 = SN1*EVSCAL
                    213:          ELSE
                    214:             EVSCAL = ZERO
                    215:          END IF
                    216:       END IF
                    217:       RETURN
                    218: *
                    219: *     End of ZLAESY
                    220: *
                    221:       END

CVSweb interface <joel.bertrand@systella.fr>