File:  [local] / rpl / lapack / lapack / zlaein.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:28 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAEIN + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaein.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaein.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaein.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
   22: *                          EPS3, SMLNUM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       LOGICAL            NOINIT, RIGHTV
   26: *       INTEGER            INFO, LDB, LDH, N
   27: *       DOUBLE PRECISION   EPS3, SMLNUM
   28: *       COMPLEX*16         W
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   RWORK( * )
   32: *       COMPLEX*16         B( LDB, * ), H( LDH, * ), V( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZLAEIN uses inverse iteration to find a right or left eigenvector
   42: *> corresponding to the eigenvalue W of a complex upper Hessenberg
   43: *> matrix H.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] RIGHTV
   50: *> \verbatim
   51: *>          RIGHTV is LOGICAL
   52: *>          = .TRUE. : compute right eigenvector;
   53: *>          = .FALSE.: compute left eigenvector.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] NOINIT
   57: *> \verbatim
   58: *>          NOINIT is LOGICAL
   59: *>          = .TRUE. : no initial vector supplied in V
   60: *>          = .FALSE.: initial vector supplied in V.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] N
   64: *> \verbatim
   65: *>          N is INTEGER
   66: *>          The order of the matrix H.  N >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] H
   70: *> \verbatim
   71: *>          H is COMPLEX*16 array, dimension (LDH,N)
   72: *>          The upper Hessenberg matrix H.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDH
   76: *> \verbatim
   77: *>          LDH is INTEGER
   78: *>          The leading dimension of the array H.  LDH >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] W
   82: *> \verbatim
   83: *>          W is COMPLEX*16
   84: *>          The eigenvalue of H whose corresponding right or left
   85: *>          eigenvector is to be computed.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] V
   89: *> \verbatim
   90: *>          V is COMPLEX*16 array, dimension (N)
   91: *>          On entry, if NOINIT = .FALSE., V must contain a starting
   92: *>          vector for inverse iteration; otherwise V need not be set.
   93: *>          On exit, V contains the computed eigenvector, normalized so
   94: *>          that the component of largest magnitude has magnitude 1; here
   95: *>          the magnitude of a complex number (x,y) is taken to be
   96: *>          |x| + |y|.
   97: *> \endverbatim
   98: *>
   99: *> \param[out] B
  100: *> \verbatim
  101: *>          B is COMPLEX*16 array, dimension (LDB,N)
  102: *> \endverbatim
  103: *>
  104: *> \param[in] LDB
  105: *> \verbatim
  106: *>          LDB is INTEGER
  107: *>          The leading dimension of the array B.  LDB >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[out] RWORK
  111: *> \verbatim
  112: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  113: *> \endverbatim
  114: *>
  115: *> \param[in] EPS3
  116: *> \verbatim
  117: *>          EPS3 is DOUBLE PRECISION
  118: *>          A small machine-dependent value which is used to perturb
  119: *>          close eigenvalues, and to replace zero pivots.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] SMLNUM
  123: *> \verbatim
  124: *>          SMLNUM is DOUBLE PRECISION
  125: *>          A machine-dependent value close to the underflow threshold.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] INFO
  129: *> \verbatim
  130: *>          INFO is INTEGER
  131: *>          = 0:  successful exit
  132: *>          = 1:  inverse iteration did not converge; V is set to the
  133: *>                last iterate.
  134: *> \endverbatim
  135: *
  136: *  Authors:
  137: *  ========
  138: *
  139: *> \author Univ. of Tennessee
  140: *> \author Univ. of California Berkeley
  141: *> \author Univ. of Colorado Denver
  142: *> \author NAG Ltd.
  143: *
  144: *> \ingroup complex16OTHERauxiliary
  145: *
  146: *  =====================================================================
  147:       SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
  148:      $                   EPS3, SMLNUM, INFO )
  149: *
  150: *  -- LAPACK auxiliary routine --
  151: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  152: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  153: *
  154: *     .. Scalar Arguments ..
  155:       LOGICAL            NOINIT, RIGHTV
  156:       INTEGER            INFO, LDB, LDH, N
  157:       DOUBLE PRECISION   EPS3, SMLNUM
  158:       COMPLEX*16         W
  159: *     ..
  160: *     .. Array Arguments ..
  161:       DOUBLE PRECISION   RWORK( * )
  162:       COMPLEX*16         B( LDB, * ), H( LDH, * ), V( * )
  163: *     ..
  164: *
  165: *  =====================================================================
  166: *
  167: *     .. Parameters ..
  168:       DOUBLE PRECISION   ONE, TENTH
  169:       PARAMETER          ( ONE = 1.0D+0, TENTH = 1.0D-1 )
  170:       COMPLEX*16         ZERO
  171:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  172: *     ..
  173: *     .. Local Scalars ..
  174:       CHARACTER          NORMIN, TRANS
  175:       INTEGER            I, IERR, ITS, J
  176:       DOUBLE PRECISION   GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
  177:       COMPLEX*16         CDUM, EI, EJ, TEMP, X
  178: *     ..
  179: *     .. External Functions ..
  180:       INTEGER            IZAMAX
  181:       DOUBLE PRECISION   DZASUM, DZNRM2
  182:       COMPLEX*16         ZLADIV
  183:       EXTERNAL           IZAMAX, DZASUM, DZNRM2, ZLADIV
  184: *     ..
  185: *     .. External Subroutines ..
  186:       EXTERNAL           ZDSCAL, ZLATRS
  187: *     ..
  188: *     .. Intrinsic Functions ..
  189:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  190: *     ..
  191: *     .. Statement Functions ..
  192:       DOUBLE PRECISION   CABS1
  193: *     ..
  194: *     .. Statement Function definitions ..
  195:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  196: *     ..
  197: *     .. Executable Statements ..
  198: *
  199:       INFO = 0
  200: *
  201: *     GROWTO is the threshold used in the acceptance test for an
  202: *     eigenvector.
  203: *
  204:       ROOTN = SQRT( DBLE( N ) )
  205:       GROWTO = TENTH / ROOTN
  206:       NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
  207: *
  208: *     Form B = H - W*I (except that the subdiagonal elements are not
  209: *     stored).
  210: *
  211:       DO 20 J = 1, N
  212:          DO 10 I = 1, J - 1
  213:             B( I, J ) = H( I, J )
  214:    10    CONTINUE
  215:          B( J, J ) = H( J, J ) - W
  216:    20 CONTINUE
  217: *
  218:       IF( NOINIT ) THEN
  219: *
  220: *        Initialize V.
  221: *
  222:          DO 30 I = 1, N
  223:             V( I ) = EPS3
  224:    30    CONTINUE
  225:       ELSE
  226: *
  227: *        Scale supplied initial vector.
  228: *
  229:          VNORM = DZNRM2( N, V, 1 )
  230:          CALL ZDSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
  231:       END IF
  232: *
  233:       IF( RIGHTV ) THEN
  234: *
  235: *        LU decomposition with partial pivoting of B, replacing zero
  236: *        pivots by EPS3.
  237: *
  238:          DO 60 I = 1, N - 1
  239:             EI = H( I+1, I )
  240:             IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
  241: *
  242: *              Interchange rows and eliminate.
  243: *
  244:                X = ZLADIV( B( I, I ), EI )
  245:                B( I, I ) = EI
  246:                DO 40 J = I + 1, N
  247:                   TEMP = B( I+1, J )
  248:                   B( I+1, J ) = B( I, J ) - X*TEMP
  249:                   B( I, J ) = TEMP
  250:    40          CONTINUE
  251:             ELSE
  252: *
  253: *              Eliminate without interchange.
  254: *
  255:                IF( B( I, I ).EQ.ZERO )
  256:      $            B( I, I ) = EPS3
  257:                X = ZLADIV( EI, B( I, I ) )
  258:                IF( X.NE.ZERO ) THEN
  259:                   DO 50 J = I + 1, N
  260:                      B( I+1, J ) = B( I+1, J ) - X*B( I, J )
  261:    50             CONTINUE
  262:                END IF
  263:             END IF
  264:    60    CONTINUE
  265:          IF( B( N, N ).EQ.ZERO )
  266:      $      B( N, N ) = EPS3
  267: *
  268:          TRANS = 'N'
  269: *
  270:       ELSE
  271: *
  272: *        UL decomposition with partial pivoting of B, replacing zero
  273: *        pivots by EPS3.
  274: *
  275:          DO 90 J = N, 2, -1
  276:             EJ = H( J, J-1 )
  277:             IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
  278: *
  279: *              Interchange columns and eliminate.
  280: *
  281:                X = ZLADIV( B( J, J ), EJ )
  282:                B( J, J ) = EJ
  283:                DO 70 I = 1, J - 1
  284:                   TEMP = B( I, J-1 )
  285:                   B( I, J-1 ) = B( I, J ) - X*TEMP
  286:                   B( I, J ) = TEMP
  287:    70          CONTINUE
  288:             ELSE
  289: *
  290: *              Eliminate without interchange.
  291: *
  292:                IF( B( J, J ).EQ.ZERO )
  293:      $            B( J, J ) = EPS3
  294:                X = ZLADIV( EJ, B( J, J ) )
  295:                IF( X.NE.ZERO ) THEN
  296:                   DO 80 I = 1, J - 1
  297:                      B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
  298:    80             CONTINUE
  299:                END IF
  300:             END IF
  301:    90    CONTINUE
  302:          IF( B( 1, 1 ).EQ.ZERO )
  303:      $      B( 1, 1 ) = EPS3
  304: *
  305:          TRANS = 'C'
  306: *
  307:       END IF
  308: *
  309:       NORMIN = 'N'
  310:       DO 110 ITS = 1, N
  311: *
  312: *        Solve U*x = scale*v for a right eigenvector
  313: *          or U**H *x = scale*v for a left eigenvector,
  314: *        overwriting x on v.
  315: *
  316:          CALL ZLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
  317:      $                SCALE, RWORK, IERR )
  318:          NORMIN = 'Y'
  319: *
  320: *        Test for sufficient growth in the norm of v.
  321: *
  322:          VNORM = DZASUM( N, V, 1 )
  323:          IF( VNORM.GE.GROWTO*SCALE )
  324:      $      GO TO 120
  325: *
  326: *        Choose new orthogonal starting vector and try again.
  327: *
  328:          RTEMP = EPS3 / ( ROOTN+ONE )
  329:          V( 1 ) = EPS3
  330:          DO 100 I = 2, N
  331:             V( I ) = RTEMP
  332:   100    CONTINUE
  333:          V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
  334:   110 CONTINUE
  335: *
  336: *     Failure to find eigenvector in N iterations.
  337: *
  338:       INFO = 1
  339: *
  340:   120 CONTINUE
  341: *
  342: *     Normalize eigenvector.
  343: *
  344:       I = IZAMAX( N, V, 1 )
  345:       CALL ZDSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
  346: *
  347:       RETURN
  348: *
  349: *     End of ZLAEIN
  350: *
  351:       END

CVSweb interface <joel.bertrand@systella.fr>