File:  [local] / rpl / lapack / lapack / zlaein.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:53 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b ZLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAEIN + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaein.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaein.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaein.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
   22: *                          EPS3, SMLNUM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       LOGICAL            NOINIT, RIGHTV
   26: *       INTEGER            INFO, LDB, LDH, N
   27: *       DOUBLE PRECISION   EPS3, SMLNUM
   28: *       COMPLEX*16         W
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   RWORK( * )
   32: *       COMPLEX*16         B( LDB, * ), H( LDH, * ), V( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZLAEIN uses inverse iteration to find a right or left eigenvector
   42: *> corresponding to the eigenvalue W of a complex upper Hessenberg
   43: *> matrix H.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] RIGHTV
   50: *> \verbatim
   51: *>          RIGHTV is LOGICAL
   52: *>          = .TRUE. : compute right eigenvector;
   53: *>          = .FALSE.: compute left eigenvector.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] NOINIT
   57: *> \verbatim
   58: *>          NOINIT is LOGICAL
   59: *>          = .TRUE. : no initial vector supplied in V
   60: *>          = .FALSE.: initial vector supplied in V.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] N
   64: *> \verbatim
   65: *>          N is INTEGER
   66: *>          The order of the matrix H.  N >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] H
   70: *> \verbatim
   71: *>          H is COMPLEX*16 array, dimension (LDH,N)
   72: *>          The upper Hessenberg matrix H.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDH
   76: *> \verbatim
   77: *>          LDH is INTEGER
   78: *>          The leading dimension of the array H.  LDH >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] W
   82: *> \verbatim
   83: *>          W is COMPLEX*16
   84: *>          The eigenvalue of H whose corresponding right or left
   85: *>          eigenvector is to be computed.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] V
   89: *> \verbatim
   90: *>          V is COMPLEX*16 array, dimension (N)
   91: *>          On entry, if NOINIT = .FALSE., V must contain a starting
   92: *>          vector for inverse iteration; otherwise V need not be set.
   93: *>          On exit, V contains the computed eigenvector, normalized so
   94: *>          that the component of largest magnitude has magnitude 1; here
   95: *>          the magnitude of a complex number (x,y) is taken to be
   96: *>          |x| + |y|.
   97: *> \endverbatim
   98: *>
   99: *> \param[out] B
  100: *> \verbatim
  101: *>          B is COMPLEX*16 array, dimension (LDB,N)
  102: *> \endverbatim
  103: *>
  104: *> \param[in] LDB
  105: *> \verbatim
  106: *>          LDB is INTEGER
  107: *>          The leading dimension of the array B.  LDB >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[out] RWORK
  111: *> \verbatim
  112: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  113: *> \endverbatim
  114: *>
  115: *> \param[in] EPS3
  116: *> \verbatim
  117: *>          EPS3 is DOUBLE PRECISION
  118: *>          A small machine-dependent value which is used to perturb
  119: *>          close eigenvalues, and to replace zero pivots.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] SMLNUM
  123: *> \verbatim
  124: *>          SMLNUM is DOUBLE PRECISION
  125: *>          A machine-dependent value close to the underflow threshold.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] INFO
  129: *> \verbatim
  130: *>          INFO is INTEGER
  131: *>          = 0:  successful exit
  132: *>          = 1:  inverse iteration did not converge; V is set to the
  133: *>                last iterate.
  134: *> \endverbatim
  135: *
  136: *  Authors:
  137: *  ========
  138: *
  139: *> \author Univ. of Tennessee
  140: *> \author Univ. of California Berkeley
  141: *> \author Univ. of Colorado Denver
  142: *> \author NAG Ltd.
  143: *
  144: *> \date December 2016
  145: *
  146: *> \ingroup complex16OTHERauxiliary
  147: *
  148: *  =====================================================================
  149:       SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
  150:      $                   EPS3, SMLNUM, INFO )
  151: *
  152: *  -- LAPACK auxiliary routine (version 3.7.0) --
  153: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  154: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155: *     December 2016
  156: *
  157: *     .. Scalar Arguments ..
  158:       LOGICAL            NOINIT, RIGHTV
  159:       INTEGER            INFO, LDB, LDH, N
  160:       DOUBLE PRECISION   EPS3, SMLNUM
  161:       COMPLEX*16         W
  162: *     ..
  163: *     .. Array Arguments ..
  164:       DOUBLE PRECISION   RWORK( * )
  165:       COMPLEX*16         B( LDB, * ), H( LDH, * ), V( * )
  166: *     ..
  167: *
  168: *  =====================================================================
  169: *
  170: *     .. Parameters ..
  171:       DOUBLE PRECISION   ONE, TENTH
  172:       PARAMETER          ( ONE = 1.0D+0, TENTH = 1.0D-1 )
  173:       COMPLEX*16         ZERO
  174:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  175: *     ..
  176: *     .. Local Scalars ..
  177:       CHARACTER          NORMIN, TRANS
  178:       INTEGER            I, IERR, ITS, J
  179:       DOUBLE PRECISION   GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
  180:       COMPLEX*16         CDUM, EI, EJ, TEMP, X
  181: *     ..
  182: *     .. External Functions ..
  183:       INTEGER            IZAMAX
  184:       DOUBLE PRECISION   DZASUM, DZNRM2
  185:       COMPLEX*16         ZLADIV
  186:       EXTERNAL           IZAMAX, DZASUM, DZNRM2, ZLADIV
  187: *     ..
  188: *     .. External Subroutines ..
  189:       EXTERNAL           ZDSCAL, ZLATRS
  190: *     ..
  191: *     .. Intrinsic Functions ..
  192:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  193: *     ..
  194: *     .. Statement Functions ..
  195:       DOUBLE PRECISION   CABS1
  196: *     ..
  197: *     .. Statement Function definitions ..
  198:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  199: *     ..
  200: *     .. Executable Statements ..
  201: *
  202:       INFO = 0
  203: *
  204: *     GROWTO is the threshold used in the acceptance test for an
  205: *     eigenvector.
  206: *
  207:       ROOTN = SQRT( DBLE( N ) )
  208:       GROWTO = TENTH / ROOTN
  209:       NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
  210: *
  211: *     Form B = H - W*I (except that the subdiagonal elements are not
  212: *     stored).
  213: *
  214:       DO 20 J = 1, N
  215:          DO 10 I = 1, J - 1
  216:             B( I, J ) = H( I, J )
  217:    10    CONTINUE
  218:          B( J, J ) = H( J, J ) - W
  219:    20 CONTINUE
  220: *
  221:       IF( NOINIT ) THEN
  222: *
  223: *        Initialize V.
  224: *
  225:          DO 30 I = 1, N
  226:             V( I ) = EPS3
  227:    30    CONTINUE
  228:       ELSE
  229: *
  230: *        Scale supplied initial vector.
  231: *
  232:          VNORM = DZNRM2( N, V, 1 )
  233:          CALL ZDSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
  234:       END IF
  235: *
  236:       IF( RIGHTV ) THEN
  237: *
  238: *        LU decomposition with partial pivoting of B, replacing zero
  239: *        pivots by EPS3.
  240: *
  241:          DO 60 I = 1, N - 1
  242:             EI = H( I+1, I )
  243:             IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
  244: *
  245: *              Interchange rows and eliminate.
  246: *
  247:                X = ZLADIV( B( I, I ), EI )
  248:                B( I, I ) = EI
  249:                DO 40 J = I + 1, N
  250:                   TEMP = B( I+1, J )
  251:                   B( I+1, J ) = B( I, J ) - X*TEMP
  252:                   B( I, J ) = TEMP
  253:    40          CONTINUE
  254:             ELSE
  255: *
  256: *              Eliminate without interchange.
  257: *
  258:                IF( B( I, I ).EQ.ZERO )
  259:      $            B( I, I ) = EPS3
  260:                X = ZLADIV( EI, B( I, I ) )
  261:                IF( X.NE.ZERO ) THEN
  262:                   DO 50 J = I + 1, N
  263:                      B( I+1, J ) = B( I+1, J ) - X*B( I, J )
  264:    50             CONTINUE
  265:                END IF
  266:             END IF
  267:    60    CONTINUE
  268:          IF( B( N, N ).EQ.ZERO )
  269:      $      B( N, N ) = EPS3
  270: *
  271:          TRANS = 'N'
  272: *
  273:       ELSE
  274: *
  275: *        UL decomposition with partial pivoting of B, replacing zero
  276: *        pivots by EPS3.
  277: *
  278:          DO 90 J = N, 2, -1
  279:             EJ = H( J, J-1 )
  280:             IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
  281: *
  282: *              Interchange columns and eliminate.
  283: *
  284:                X = ZLADIV( B( J, J ), EJ )
  285:                B( J, J ) = EJ
  286:                DO 70 I = 1, J - 1
  287:                   TEMP = B( I, J-1 )
  288:                   B( I, J-1 ) = B( I, J ) - X*TEMP
  289:                   B( I, J ) = TEMP
  290:    70          CONTINUE
  291:             ELSE
  292: *
  293: *              Eliminate without interchange.
  294: *
  295:                IF( B( J, J ).EQ.ZERO )
  296:      $            B( J, J ) = EPS3
  297:                X = ZLADIV( EJ, B( J, J ) )
  298:                IF( X.NE.ZERO ) THEN
  299:                   DO 80 I = 1, J - 1
  300:                      B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
  301:    80             CONTINUE
  302:                END IF
  303:             END IF
  304:    90    CONTINUE
  305:          IF( B( 1, 1 ).EQ.ZERO )
  306:      $      B( 1, 1 ) = EPS3
  307: *
  308:          TRANS = 'C'
  309: *
  310:       END IF
  311: *
  312:       NORMIN = 'N'
  313:       DO 110 ITS = 1, N
  314: *
  315: *        Solve U*x = scale*v for a right eigenvector
  316: *          or U**H *x = scale*v for a left eigenvector,
  317: *        overwriting x on v.
  318: *
  319:          CALL ZLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
  320:      $                SCALE, RWORK, IERR )
  321:          NORMIN = 'Y'
  322: *
  323: *        Test for sufficient growth in the norm of v.
  324: *
  325:          VNORM = DZASUM( N, V, 1 )
  326:          IF( VNORM.GE.GROWTO*SCALE )
  327:      $      GO TO 120
  328: *
  329: *        Choose new orthogonal starting vector and try again.
  330: *
  331:          RTEMP = EPS3 / ( ROOTN+ONE )
  332:          V( 1 ) = EPS3
  333:          DO 100 I = 2, N
  334:             V( I ) = RTEMP
  335:   100    CONTINUE
  336:          V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
  337:   110 CONTINUE
  338: *
  339: *     Failure to find eigenvector in N iterations.
  340: *
  341:       INFO = 1
  342: *
  343:   120 CONTINUE
  344: *
  345: *     Normalize eigenvector.
  346: *
  347:       I = IZAMAX( N, V, 1 )
  348:       CALL ZDSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
  349: *
  350:       RETURN
  351: *
  352: *     End of ZLAEIN
  353: *
  354:       END

CVSweb interface <joel.bertrand@systella.fr>