Annotation of rpl/lapack/lapack/zlaed7.f, revision 1.20

1.20    ! bertrand    1: *> \brief \b ZLAED7 used by ZSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZLAED7 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaed7.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaed7.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaed7.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAED7( N, CUTPNT, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
                     22: *                          LDQ, RHO, INDXQ, QSTORE, QPTR, PRMPTR, PERM,
                     23: *                          GIVPTR, GIVCOL, GIVNUM, WORK, RWORK, IWORK,
                     24: *                          INFO )
1.17      bertrand   25: *
1.9       bertrand   26: *       .. Scalar Arguments ..
                     27: *       INTEGER            CURLVL, CURPBM, CUTPNT, INFO, LDQ, N, QSIZ,
                     28: *      $                   TLVLS
                     29: *       DOUBLE PRECISION   RHO
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
                     33: *      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
                     34: *       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), QSTORE( * ), RWORK( * )
                     35: *       COMPLEX*16         Q( LDQ, * ), WORK( * )
                     36: *       ..
1.17      bertrand   37: *
1.9       bertrand   38: *
                     39: *> \par Purpose:
                     40: *  =============
                     41: *>
                     42: *> \verbatim
                     43: *>
                     44: *> ZLAED7 computes the updated eigensystem of a diagonal
                     45: *> matrix after modification by a rank-one symmetric matrix. This
                     46: *> routine is used only for the eigenproblem which requires all
                     47: *> eigenvalues and optionally eigenvectors of a dense or banded
                     48: *> Hermitian matrix that has been reduced to tridiagonal form.
                     49: *>
                     50: *>   T = Q(in) ( D(in) + RHO * Z*Z**H ) Q**H(in) = Q(out) * D(out) * Q**H(out)
                     51: *>
                     52: *>   where Z = Q**Hu, u is a vector of length N with ones in the
                     53: *>   CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
                     54: *>
                     55: *>    The eigenvectors of the original matrix are stored in Q, and the
                     56: *>    eigenvalues are in D.  The algorithm consists of three stages:
                     57: *>
                     58: *>       The first stage consists of deflating the size of the problem
                     59: *>       when there are multiple eigenvalues or if there is a zero in
1.15      bertrand   60: *>       the Z vector.  For each such occurrence the dimension of the
1.9       bertrand   61: *>       secular equation problem is reduced by one.  This stage is
                     62: *>       performed by the routine DLAED2.
                     63: *>
                     64: *>       The second stage consists of calculating the updated
                     65: *>       eigenvalues. This is done by finding the roots of the secular
                     66: *>       equation via the routine DLAED4 (as called by SLAED3).
                     67: *>       This routine also calculates the eigenvectors of the current
                     68: *>       problem.
                     69: *>
                     70: *>       The final stage consists of computing the updated eigenvectors
                     71: *>       directly using the updated eigenvalues.  The eigenvectors for
                     72: *>       the current problem are multiplied with the eigenvectors from
                     73: *>       the overall problem.
                     74: *> \endverbatim
                     75: *
                     76: *  Arguments:
                     77: *  ==========
                     78: *
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] CUTPNT
                     86: *> \verbatim
                     87: *>          CUTPNT is INTEGER
                     88: *>         Contains the location of the last eigenvalue in the leading
                     89: *>         sub-matrix.  min(1,N) <= CUTPNT <= N.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] QSIZ
                     93: *> \verbatim
                     94: *>          QSIZ is INTEGER
                     95: *>         The dimension of the unitary matrix used to reduce
                     96: *>         the full matrix to tridiagonal form.  QSIZ >= N.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] TLVLS
                    100: *> \verbatim
                    101: *>          TLVLS is INTEGER
                    102: *>         The total number of merging levels in the overall divide and
                    103: *>         conquer tree.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] CURLVL
                    107: *> \verbatim
                    108: *>          CURLVL is INTEGER
                    109: *>         The current level in the overall merge routine,
                    110: *>         0 <= curlvl <= tlvls.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] CURPBM
                    114: *> \verbatim
                    115: *>          CURPBM is INTEGER
                    116: *>         The current problem in the current level in the overall
                    117: *>         merge routine (counting from upper left to lower right).
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in,out] D
                    121: *> \verbatim
                    122: *>          D is DOUBLE PRECISION array, dimension (N)
                    123: *>         On entry, the eigenvalues of the rank-1-perturbed matrix.
                    124: *>         On exit, the eigenvalues of the repaired matrix.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in,out] Q
                    128: *> \verbatim
                    129: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
                    130: *>         On entry, the eigenvectors of the rank-1-perturbed matrix.
                    131: *>         On exit, the eigenvectors of the repaired tridiagonal matrix.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LDQ
                    135: *> \verbatim
                    136: *>          LDQ is INTEGER
                    137: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] RHO
                    141: *> \verbatim
                    142: *>          RHO is DOUBLE PRECISION
                    143: *>         Contains the subdiagonal element used to create the rank-1
                    144: *>         modification.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] INDXQ
                    148: *> \verbatim
                    149: *>          INDXQ is INTEGER array, dimension (N)
                    150: *>         This contains the permutation which will reintegrate the
                    151: *>         subproblem just solved back into sorted order,
                    152: *>         ie. D( INDXQ( I = 1, N ) ) will be in ascending order.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] IWORK
                    156: *> \verbatim
                    157: *>          IWORK is INTEGER array, dimension (4*N)
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] RWORK
                    161: *> \verbatim
                    162: *>          RWORK is DOUBLE PRECISION array,
                    163: *>                                 dimension (3*N+2*QSIZ*N)
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[out] WORK
                    167: *> \verbatim
                    168: *>          WORK is COMPLEX*16 array, dimension (QSIZ*N)
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[in,out] QSTORE
                    172: *> \verbatim
                    173: *>          QSTORE is DOUBLE PRECISION array, dimension (N**2+1)
                    174: *>         Stores eigenvectors of submatrices encountered during
                    175: *>         divide and conquer, packed together. QPTR points to
                    176: *>         beginning of the submatrices.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[in,out] QPTR
                    180: *> \verbatim
                    181: *>          QPTR is INTEGER array, dimension (N+2)
                    182: *>         List of indices pointing to beginning of submatrices stored
                    183: *>         in QSTORE. The submatrices are numbered starting at the
                    184: *>         bottom left of the divide and conquer tree, from left to
                    185: *>         right and bottom to top.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[in] PRMPTR
                    189: *> \verbatim
                    190: *>          PRMPTR is INTEGER array, dimension (N lg N)
                    191: *>         Contains a list of pointers which indicate where in PERM a
                    192: *>         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
                    193: *>         indicates the size of the permutation and also the size of
                    194: *>         the full, non-deflated problem.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in] PERM
                    198: *> \verbatim
                    199: *>          PERM is INTEGER array, dimension (N lg N)
                    200: *>         Contains the permutations (from deflation and sorting) to be
                    201: *>         applied to each eigenblock.
                    202: *> \endverbatim
                    203: *>
                    204: *> \param[in] GIVPTR
                    205: *> \verbatim
                    206: *>          GIVPTR is INTEGER array, dimension (N lg N)
                    207: *>         Contains a list of pointers which indicate where in GIVCOL a
                    208: *>         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
                    209: *>         indicates the number of Givens rotations.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[in] GIVCOL
                    213: *> \verbatim
                    214: *>          GIVCOL is INTEGER array, dimension (2, N lg N)
                    215: *>         Each pair of numbers indicates a pair of columns to take place
                    216: *>         in a Givens rotation.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[in] GIVNUM
                    220: *> \verbatim
                    221: *>          GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
                    222: *>         Each number indicates the S value to be used in the
                    223: *>         corresponding Givens rotation.
                    224: *> \endverbatim
                    225: *>
                    226: *> \param[out] INFO
                    227: *> \verbatim
                    228: *>          INFO is INTEGER
                    229: *>          = 0:  successful exit.
                    230: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    231: *>          > 0:  if INFO = 1, an eigenvalue did not converge
                    232: *> \endverbatim
                    233: *
                    234: *  Authors:
                    235: *  ========
                    236: *
1.17      bertrand  237: *> \author Univ. of Tennessee
                    238: *> \author Univ. of California Berkeley
                    239: *> \author Univ. of Colorado Denver
                    240: *> \author NAG Ltd.
1.9       bertrand  241: *
                    242: *> \ingroup complex16OTHERcomputational
                    243: *
                    244: *  =====================================================================
1.1       bertrand  245:       SUBROUTINE ZLAED7( N, CUTPNT, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
                    246:      $                   LDQ, RHO, INDXQ, QSTORE, QPTR, PRMPTR, PERM,
                    247:      $                   GIVPTR, GIVCOL, GIVNUM, WORK, RWORK, IWORK,
                    248:      $                   INFO )
                    249: *
1.20    ! bertrand  250: *  -- LAPACK computational routine --
1.1       bertrand  251: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    252: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    253: *
                    254: *     .. Scalar Arguments ..
                    255:       INTEGER            CURLVL, CURPBM, CUTPNT, INFO, LDQ, N, QSIZ,
                    256:      $                   TLVLS
                    257:       DOUBLE PRECISION   RHO
                    258: *     ..
                    259: *     .. Array Arguments ..
                    260:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
                    261:      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
                    262:       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), QSTORE( * ), RWORK( * )
                    263:       COMPLEX*16         Q( LDQ, * ), WORK( * )
                    264: *     ..
                    265: *
                    266: *  =====================================================================
                    267: *
                    268: *     .. Local Scalars ..
                    269:       INTEGER            COLTYP, CURR, I, IDLMDA, INDX,
                    270:      $                   INDXC, INDXP, IQ, IW, IZ, K, N1, N2, PTR
                    271: *     ..
                    272: *     .. External Subroutines ..
                    273:       EXTERNAL           DLAED9, DLAEDA, DLAMRG, XERBLA, ZLACRM, ZLAED8
                    274: *     ..
                    275: *     .. Intrinsic Functions ..
                    276:       INTRINSIC          MAX, MIN
                    277: *     ..
                    278: *     .. Executable Statements ..
                    279: *
                    280: *     Test the input parameters.
                    281: *
                    282:       INFO = 0
                    283: *
                    284: *     IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
                    285: *        INFO = -1
                    286: *     ELSE IF( N.LT.0 ) THEN
                    287:       IF( N.LT.0 ) THEN
                    288:          INFO = -1
                    289:       ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
                    290:          INFO = -2
                    291:       ELSE IF( QSIZ.LT.N ) THEN
                    292:          INFO = -3
                    293:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    294:          INFO = -9
                    295:       END IF
                    296:       IF( INFO.NE.0 ) THEN
                    297:          CALL XERBLA( 'ZLAED7', -INFO )
                    298:          RETURN
                    299:       END IF
                    300: *
                    301: *     Quick return if possible
                    302: *
                    303:       IF( N.EQ.0 )
                    304:      $   RETURN
                    305: *
                    306: *     The following values are for bookkeeping purposes only.  They are
                    307: *     integer pointers which indicate the portion of the workspace
                    308: *     used by a particular array in DLAED2 and SLAED3.
                    309: *
                    310:       IZ = 1
                    311:       IDLMDA = IZ + N
                    312:       IW = IDLMDA + N
                    313:       IQ = IW + N
                    314: *
                    315:       INDX = 1
                    316:       INDXC = INDX + N
                    317:       COLTYP = INDXC + N
                    318:       INDXP = COLTYP + N
                    319: *
                    320: *     Form the z-vector which consists of the last row of Q_1 and the
                    321: *     first row of Q_2.
                    322: *
                    323:       PTR = 1 + 2**TLVLS
                    324:       DO 10 I = 1, CURLVL - 1
                    325:          PTR = PTR + 2**( TLVLS-I )
                    326:    10 CONTINUE
                    327:       CURR = PTR + CURPBM
                    328:       CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
                    329:      $             GIVCOL, GIVNUM, QSTORE, QPTR, RWORK( IZ ),
                    330:      $             RWORK( IZ+N ), INFO )
                    331: *
                    332: *     When solving the final problem, we no longer need the stored data,
                    333: *     so we will overwrite the data from this level onto the previously
                    334: *     used storage space.
                    335: *
                    336:       IF( CURLVL.EQ.TLVLS ) THEN
                    337:          QPTR( CURR ) = 1
                    338:          PRMPTR( CURR ) = 1
                    339:          GIVPTR( CURR ) = 1
                    340:       END IF
                    341: *
                    342: *     Sort and Deflate eigenvalues.
                    343: *
                    344:       CALL ZLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, RWORK( IZ ),
                    345:      $             RWORK( IDLMDA ), WORK, QSIZ, RWORK( IW ),
                    346:      $             IWORK( INDXP ), IWORK( INDX ), INDXQ,
                    347:      $             PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
                    348:      $             GIVCOL( 1, GIVPTR( CURR ) ),
                    349:      $             GIVNUM( 1, GIVPTR( CURR ) ), INFO )
                    350:       PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
                    351:       GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
                    352: *
                    353: *     Solve Secular Equation.
                    354: *
                    355:       IF( K.NE.0 ) THEN
                    356:          CALL DLAED9( K, 1, K, N, D, RWORK( IQ ), K, RHO,
                    357:      $                RWORK( IDLMDA ), RWORK( IW ),
                    358:      $                QSTORE( QPTR( CURR ) ), K, INFO )
                    359:          CALL ZLACRM( QSIZ, K, WORK, QSIZ, QSTORE( QPTR( CURR ) ), K, Q,
                    360:      $                LDQ, RWORK( IQ ) )
                    361:          QPTR( CURR+1 ) = QPTR( CURR ) + K**2
                    362:          IF( INFO.NE.0 ) THEN
                    363:             RETURN
                    364:          END IF
                    365: *
                    366: *     Prepare the INDXQ sorting premutation.
                    367: *
                    368:          N1 = K
                    369:          N2 = N - K
                    370:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
                    371:       ELSE
                    372:          QPTR( CURR+1 ) = QPTR( CURR )
                    373:          DO 20 I = 1, N
                    374:             INDXQ( I ) = I
                    375:    20    CONTINUE
                    376:       END IF
                    377: *
                    378:       RETURN
                    379: *
                    380: *     End of ZLAED7
                    381: *
                    382:       END

CVSweb interface <joel.bertrand@systella.fr>