Annotation of rpl/lapack/lapack/zlaed7.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZLAED7( N, CUTPNT, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
        !             2:      $                   LDQ, RHO, INDXQ, QSTORE, QPTR, PRMPTR, PERM,
        !             3:      $                   GIVPTR, GIVCOL, GIVNUM, WORK, RWORK, IWORK,
        !             4:      $                   INFO )
        !             5: *
        !             6: *  -- LAPACK routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       INTEGER            CURLVL, CURPBM, CUTPNT, INFO, LDQ, N, QSIZ,
        !            13:      $                   TLVLS
        !            14:       DOUBLE PRECISION   RHO
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
        !            18:      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
        !            19:       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), QSTORE( * ), RWORK( * )
        !            20:       COMPLEX*16         Q( LDQ, * ), WORK( * )
        !            21: *     ..
        !            22: *
        !            23: *  Purpose
        !            24: *  =======
        !            25: *
        !            26: *  ZLAED7 computes the updated eigensystem of a diagonal
        !            27: *  matrix after modification by a rank-one symmetric matrix. This
        !            28: *  routine is used only for the eigenproblem which requires all
        !            29: *  eigenvalues and optionally eigenvectors of a dense or banded
        !            30: *  Hermitian matrix that has been reduced to tridiagonal form.
        !            31: *
        !            32: *    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
        !            33: *
        !            34: *    where Z = Q'u, u is a vector of length N with ones in the
        !            35: *    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
        !            36: *
        !            37: *     The eigenvectors of the original matrix are stored in Q, and the
        !            38: *     eigenvalues are in D.  The algorithm consists of three stages:
        !            39: *
        !            40: *        The first stage consists of deflating the size of the problem
        !            41: *        when there are multiple eigenvalues or if there is a zero in
        !            42: *        the Z vector.  For each such occurence the dimension of the
        !            43: *        secular equation problem is reduced by one.  This stage is
        !            44: *        performed by the routine DLAED2.
        !            45: *
        !            46: *        The second stage consists of calculating the updated
        !            47: *        eigenvalues. This is done by finding the roots of the secular
        !            48: *        equation via the routine DLAED4 (as called by SLAED3).
        !            49: *        This routine also calculates the eigenvectors of the current
        !            50: *        problem.
        !            51: *
        !            52: *        The final stage consists of computing the updated eigenvectors
        !            53: *        directly using the updated eigenvalues.  The eigenvectors for
        !            54: *        the current problem are multiplied with the eigenvectors from
        !            55: *        the overall problem.
        !            56: *
        !            57: *  Arguments
        !            58: *  =========
        !            59: *
        !            60: *  N      (input) INTEGER
        !            61: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            62: *
        !            63: *  CUTPNT (input) INTEGER
        !            64: *         Contains the location of the last eigenvalue in the leading
        !            65: *         sub-matrix.  min(1,N) <= CUTPNT <= N.
        !            66: *
        !            67: *  QSIZ   (input) INTEGER
        !            68: *         The dimension of the unitary matrix used to reduce
        !            69: *         the full matrix to tridiagonal form.  QSIZ >= N.
        !            70: *
        !            71: *  TLVLS  (input) INTEGER
        !            72: *         The total number of merging levels in the overall divide and
        !            73: *         conquer tree.
        !            74: *
        !            75: *  CURLVL (input) INTEGER
        !            76: *         The current level in the overall merge routine,
        !            77: *         0 <= curlvl <= tlvls.
        !            78: *
        !            79: *  CURPBM (input) INTEGER
        !            80: *         The current problem in the current level in the overall
        !            81: *         merge routine (counting from upper left to lower right).
        !            82: *
        !            83: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
        !            84: *         On entry, the eigenvalues of the rank-1-perturbed matrix.
        !            85: *         On exit, the eigenvalues of the repaired matrix.
        !            86: *
        !            87: *  Q      (input/output) COMPLEX*16 array, dimension (LDQ,N)
        !            88: *         On entry, the eigenvectors of the rank-1-perturbed matrix.
        !            89: *         On exit, the eigenvectors of the repaired tridiagonal matrix.
        !            90: *
        !            91: *  LDQ    (input) INTEGER
        !            92: *         The leading dimension of the array Q.  LDQ >= max(1,N).
        !            93: *
        !            94: *  RHO    (input) DOUBLE PRECISION
        !            95: *         Contains the subdiagonal element used to create the rank-1
        !            96: *         modification.
        !            97: *
        !            98: *  INDXQ  (output) INTEGER array, dimension (N)
        !            99: *         This contains the permutation which will reintegrate the
        !           100: *         subproblem just solved back into sorted order,
        !           101: *         ie. D( INDXQ( I = 1, N ) ) will be in ascending order.
        !           102: *
        !           103: *  IWORK  (workspace) INTEGER array, dimension (4*N)
        !           104: *
        !           105: *  RWORK  (workspace) DOUBLE PRECISION array,
        !           106: *                                 dimension (3*N+2*QSIZ*N)
        !           107: *
        !           108: *  WORK   (workspace) COMPLEX*16 array, dimension (QSIZ*N)
        !           109: *
        !           110: *  QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
        !           111: *         Stores eigenvectors of submatrices encountered during
        !           112: *         divide and conquer, packed together. QPTR points to
        !           113: *         beginning of the submatrices.
        !           114: *
        !           115: *  QPTR   (input/output) INTEGER array, dimension (N+2)
        !           116: *         List of indices pointing to beginning of submatrices stored
        !           117: *         in QSTORE. The submatrices are numbered starting at the
        !           118: *         bottom left of the divide and conquer tree, from left to
        !           119: *         right and bottom to top.
        !           120: *
        !           121: *  PRMPTR (input) INTEGER array, dimension (N lg N)
        !           122: *         Contains a list of pointers which indicate where in PERM a
        !           123: *         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
        !           124: *         indicates the size of the permutation and also the size of
        !           125: *         the full, non-deflated problem.
        !           126: *
        !           127: *  PERM   (input) INTEGER array, dimension (N lg N)
        !           128: *         Contains the permutations (from deflation and sorting) to be
        !           129: *         applied to each eigenblock.
        !           130: *
        !           131: *  GIVPTR (input) INTEGER array, dimension (N lg N)
        !           132: *         Contains a list of pointers which indicate where in GIVCOL a
        !           133: *         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
        !           134: *         indicates the number of Givens rotations.
        !           135: *
        !           136: *  GIVCOL (input) INTEGER array, dimension (2, N lg N)
        !           137: *         Each pair of numbers indicates a pair of columns to take place
        !           138: *         in a Givens rotation.
        !           139: *
        !           140: *  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
        !           141: *         Each number indicates the S value to be used in the
        !           142: *         corresponding Givens rotation.
        !           143: *
        !           144: *  INFO   (output) INTEGER
        !           145: *          = 0:  successful exit.
        !           146: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           147: *          > 0:  if INFO = 1, an eigenvalue did not converge
        !           148: *
        !           149: *  =====================================================================
        !           150: *
        !           151: *     .. Local Scalars ..
        !           152:       INTEGER            COLTYP, CURR, I, IDLMDA, INDX,
        !           153:      $                   INDXC, INDXP, IQ, IW, IZ, K, N1, N2, PTR
        !           154: *     ..
        !           155: *     .. External Subroutines ..
        !           156:       EXTERNAL           DLAED9, DLAEDA, DLAMRG, XERBLA, ZLACRM, ZLAED8
        !           157: *     ..
        !           158: *     .. Intrinsic Functions ..
        !           159:       INTRINSIC          MAX, MIN
        !           160: *     ..
        !           161: *     .. Executable Statements ..
        !           162: *
        !           163: *     Test the input parameters.
        !           164: *
        !           165:       INFO = 0
        !           166: *
        !           167: *     IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
        !           168: *        INFO = -1
        !           169: *     ELSE IF( N.LT.0 ) THEN
        !           170:       IF( N.LT.0 ) THEN
        !           171:          INFO = -1
        !           172:       ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
        !           173:          INFO = -2
        !           174:       ELSE IF( QSIZ.LT.N ) THEN
        !           175:          INFO = -3
        !           176:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
        !           177:          INFO = -9
        !           178:       END IF
        !           179:       IF( INFO.NE.0 ) THEN
        !           180:          CALL XERBLA( 'ZLAED7', -INFO )
        !           181:          RETURN
        !           182:       END IF
        !           183: *
        !           184: *     Quick return if possible
        !           185: *
        !           186:       IF( N.EQ.0 )
        !           187:      $   RETURN
        !           188: *
        !           189: *     The following values are for bookkeeping purposes only.  They are
        !           190: *     integer pointers which indicate the portion of the workspace
        !           191: *     used by a particular array in DLAED2 and SLAED3.
        !           192: *
        !           193:       IZ = 1
        !           194:       IDLMDA = IZ + N
        !           195:       IW = IDLMDA + N
        !           196:       IQ = IW + N
        !           197: *
        !           198:       INDX = 1
        !           199:       INDXC = INDX + N
        !           200:       COLTYP = INDXC + N
        !           201:       INDXP = COLTYP + N
        !           202: *
        !           203: *     Form the z-vector which consists of the last row of Q_1 and the
        !           204: *     first row of Q_2.
        !           205: *
        !           206:       PTR = 1 + 2**TLVLS
        !           207:       DO 10 I = 1, CURLVL - 1
        !           208:          PTR = PTR + 2**( TLVLS-I )
        !           209:    10 CONTINUE
        !           210:       CURR = PTR + CURPBM
        !           211:       CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
        !           212:      $             GIVCOL, GIVNUM, QSTORE, QPTR, RWORK( IZ ),
        !           213:      $             RWORK( IZ+N ), INFO )
        !           214: *
        !           215: *     When solving the final problem, we no longer need the stored data,
        !           216: *     so we will overwrite the data from this level onto the previously
        !           217: *     used storage space.
        !           218: *
        !           219:       IF( CURLVL.EQ.TLVLS ) THEN
        !           220:          QPTR( CURR ) = 1
        !           221:          PRMPTR( CURR ) = 1
        !           222:          GIVPTR( CURR ) = 1
        !           223:       END IF
        !           224: *
        !           225: *     Sort and Deflate eigenvalues.
        !           226: *
        !           227:       CALL ZLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, RWORK( IZ ),
        !           228:      $             RWORK( IDLMDA ), WORK, QSIZ, RWORK( IW ),
        !           229:      $             IWORK( INDXP ), IWORK( INDX ), INDXQ,
        !           230:      $             PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
        !           231:      $             GIVCOL( 1, GIVPTR( CURR ) ),
        !           232:      $             GIVNUM( 1, GIVPTR( CURR ) ), INFO )
        !           233:       PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
        !           234:       GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
        !           235: *
        !           236: *     Solve Secular Equation.
        !           237: *
        !           238:       IF( K.NE.0 ) THEN
        !           239:          CALL DLAED9( K, 1, K, N, D, RWORK( IQ ), K, RHO,
        !           240:      $                RWORK( IDLMDA ), RWORK( IW ),
        !           241:      $                QSTORE( QPTR( CURR ) ), K, INFO )
        !           242:          CALL ZLACRM( QSIZ, K, WORK, QSIZ, QSTORE( QPTR( CURR ) ), K, Q,
        !           243:      $                LDQ, RWORK( IQ ) )
        !           244:          QPTR( CURR+1 ) = QPTR( CURR ) + K**2
        !           245:          IF( INFO.NE.0 ) THEN
        !           246:             RETURN
        !           247:          END IF
        !           248: *
        !           249: *     Prepare the INDXQ sorting premutation.
        !           250: *
        !           251:          N1 = K
        !           252:          N2 = N - K
        !           253:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
        !           254:       ELSE
        !           255:          QPTR( CURR+1 ) = QPTR( CURR )
        !           256:          DO 20 I = 1, N
        !           257:             INDXQ( I ) = I
        !           258:    20    CONTINUE
        !           259:       END IF
        !           260: *
        !           261:       RETURN
        !           262: *
        !           263: *     End of ZLAED7
        !           264: *
        !           265:       END

CVSweb interface <joel.bertrand@systella.fr>