File:  [local] / rpl / lapack / lapack / zlaed0.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:51 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZLAED0
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLAED0 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaed0.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaed0.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaed0.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
   22: *                          IWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDQ, LDQS, N, QSIZ
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IWORK( * )
   29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   30: *       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> Using the divide and conquer method, ZLAED0 computes all eigenvalues
   40: *> of a symmetric tridiagonal matrix which is one diagonal block of
   41: *> those from reducing a dense or band Hermitian matrix and
   42: *> corresponding eigenvectors of the dense or band matrix.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] QSIZ
   49: *> \verbatim
   50: *>          QSIZ is INTEGER
   51: *>         The dimension of the unitary matrix used to reduce
   52: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] D
   62: *> \verbatim
   63: *>          D is DOUBLE PRECISION array, dimension (N)
   64: *>         On entry, the diagonal elements of the tridiagonal matrix.
   65: *>         On exit, the eigenvalues in ascending order.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] E
   69: *> \verbatim
   70: *>          E is DOUBLE PRECISION array, dimension (N-1)
   71: *>         On entry, the off-diagonal elements of the tridiagonal matrix.
   72: *>         On exit, E has been destroyed.
   73: *> \endverbatim
   74: *>
   75: *> \param[in,out] Q
   76: *> \verbatim
   77: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
   78: *>         On entry, Q must contain an QSIZ x N matrix whose columns
   79: *>         unitarily orthonormal. It is a part of the unitary matrix
   80: *>         that reduces the full dense Hermitian matrix to a
   81: *>         (reducible) symmetric tridiagonal matrix.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] LDQ
   85: *> \verbatim
   86: *>          LDQ is INTEGER
   87: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
   88: *> \endverbatim
   89: *>
   90: *> \param[out] IWORK
   91: *> \verbatim
   92: *>          IWORK is INTEGER array,
   93: *>         the dimension of IWORK must be at least
   94: *>                      6 + 6*N + 5*N*lg N
   95: *>                      ( lg( N ) = smallest integer k
   96: *>                                  such that 2^k >= N )
   97: *> \endverbatim
   98: *>
   99: *> \param[out] RWORK
  100: *> \verbatim
  101: *>          RWORK is DOUBLE PRECISION array,
  102: *>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
  103: *>                        ( lg( N ) = smallest integer k
  104: *>                                    such that 2^k >= N )
  105: *> \endverbatim
  106: *>
  107: *> \param[out] QSTORE
  108: *> \verbatim
  109: *>          QSTORE is COMPLEX*16 array, dimension (LDQS, N)
  110: *>         Used to store parts of
  111: *>         the eigenvector matrix when the updating matrix multiplies
  112: *>         take place.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDQS
  116: *> \verbatim
  117: *>          LDQS is INTEGER
  118: *>         The leading dimension of the array QSTORE.
  119: *>         LDQS >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] INFO
  123: *> \verbatim
  124: *>          INFO is INTEGER
  125: *>          = 0:  successful exit.
  126: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  127: *>          > 0:  The algorithm failed to compute an eigenvalue while
  128: *>                working on the submatrix lying in rows and columns
  129: *>                INFO/(N+1) through mod(INFO,N+1).
  130: *> \endverbatim
  131: *
  132: *  Authors:
  133: *  ========
  134: *
  135: *> \author Univ. of Tennessee 
  136: *> \author Univ. of California Berkeley 
  137: *> \author Univ. of Colorado Denver 
  138: *> \author NAG Ltd. 
  139: *
  140: *> \date November 2011
  141: *
  142: *> \ingroup complex16OTHERcomputational
  143: *
  144: *  =====================================================================
  145:       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
  146:      $                   IWORK, INFO )
  147: *
  148: *  -- LAPACK computational routine (version 3.4.0) --
  149: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  151: *     November 2011
  152: *
  153: *     .. Scalar Arguments ..
  154:       INTEGER            INFO, LDQ, LDQS, N, QSIZ
  155: *     ..
  156: *     .. Array Arguments ..
  157:       INTEGER            IWORK( * )
  158:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
  159:       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
  160: *     ..
  161: *
  162: *  =====================================================================
  163: *
  164: *  Warning:      N could be as big as QSIZ!
  165: *
  166: *     .. Parameters ..
  167:       DOUBLE PRECISION   TWO
  168:       PARAMETER          ( TWO = 2.D+0 )
  169: *     ..
  170: *     .. Local Scalars ..
  171:       INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
  172:      $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
  173:      $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
  174:      $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
  175:       DOUBLE PRECISION   TEMP
  176: *     ..
  177: *     .. External Subroutines ..
  178:       EXTERNAL           DCOPY, DSTEQR, XERBLA, ZCOPY, ZLACRM, ZLAED7
  179: *     ..
  180: *     .. External Functions ..
  181:       INTEGER            ILAENV
  182:       EXTERNAL           ILAENV
  183: *     ..
  184: *     .. Intrinsic Functions ..
  185:       INTRINSIC          ABS, DBLE, INT, LOG, MAX
  186: *     ..
  187: *     .. Executable Statements ..
  188: *
  189: *     Test the input parameters.
  190: *
  191:       INFO = 0
  192: *
  193: *     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
  194: *        INFO = -1
  195: *     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
  196: *    $        THEN
  197:       IF( QSIZ.LT.MAX( 0, N ) ) THEN
  198:          INFO = -1
  199:       ELSE IF( N.LT.0 ) THEN
  200:          INFO = -2
  201:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  202:          INFO = -6
  203:       ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
  204:          INFO = -8
  205:       END IF
  206:       IF( INFO.NE.0 ) THEN
  207:          CALL XERBLA( 'ZLAED0', -INFO )
  208:          RETURN
  209:       END IF
  210: *
  211: *     Quick return if possible
  212: *
  213:       IF( N.EQ.0 )
  214:      $   RETURN
  215: *
  216:       SMLSIZ = ILAENV( 9, 'ZLAED0', ' ', 0, 0, 0, 0 )
  217: *
  218: *     Determine the size and placement of the submatrices, and save in
  219: *     the leading elements of IWORK.
  220: *
  221:       IWORK( 1 ) = N
  222:       SUBPBS = 1
  223:       TLVLS = 0
  224:    10 CONTINUE
  225:       IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
  226:          DO 20 J = SUBPBS, 1, -1
  227:             IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
  228:             IWORK( 2*J-1 ) = IWORK( J ) / 2
  229:    20    CONTINUE
  230:          TLVLS = TLVLS + 1
  231:          SUBPBS = 2*SUBPBS
  232:          GO TO 10
  233:       END IF
  234:       DO 30 J = 2, SUBPBS
  235:          IWORK( J ) = IWORK( J ) + IWORK( J-1 )
  236:    30 CONTINUE
  237: *
  238: *     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
  239: *     using rank-1 modifications (cuts).
  240: *
  241:       SPM1 = SUBPBS - 1
  242:       DO 40 I = 1, SPM1
  243:          SUBMAT = IWORK( I ) + 1
  244:          SMM1 = SUBMAT - 1
  245:          D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
  246:          D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
  247:    40 CONTINUE
  248: *
  249:       INDXQ = 4*N + 3
  250: *
  251: *     Set up workspaces for eigenvalues only/accumulate new vectors
  252: *     routine
  253: *
  254:       TEMP = LOG( DBLE( N ) ) / LOG( TWO )
  255:       LGN = INT( TEMP )
  256:       IF( 2**LGN.LT.N )
  257:      $   LGN = LGN + 1
  258:       IF( 2**LGN.LT.N )
  259:      $   LGN = LGN + 1
  260:       IPRMPT = INDXQ + N + 1
  261:       IPERM = IPRMPT + N*LGN
  262:       IQPTR = IPERM + N*LGN
  263:       IGIVPT = IQPTR + N + 2
  264:       IGIVCL = IGIVPT + N*LGN
  265: *
  266:       IGIVNM = 1
  267:       IQ = IGIVNM + 2*N*LGN
  268:       IWREM = IQ + N**2 + 1
  269: *     Initialize pointers
  270:       DO 50 I = 0, SUBPBS
  271:          IWORK( IPRMPT+I ) = 1
  272:          IWORK( IGIVPT+I ) = 1
  273:    50 CONTINUE
  274:       IWORK( IQPTR ) = 1
  275: *
  276: *     Solve each submatrix eigenproblem at the bottom of the divide and
  277: *     conquer tree.
  278: *
  279:       CURR = 0
  280:       DO 70 I = 0, SPM1
  281:          IF( I.EQ.0 ) THEN
  282:             SUBMAT = 1
  283:             MATSIZ = IWORK( 1 )
  284:          ELSE
  285:             SUBMAT = IWORK( I ) + 1
  286:             MATSIZ = IWORK( I+1 ) - IWORK( I )
  287:          END IF
  288:          LL = IQ - 1 + IWORK( IQPTR+CURR )
  289:          CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
  290:      $                RWORK( LL ), MATSIZ, RWORK, INFO )
  291:          CALL ZLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
  292:      $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
  293:      $                RWORK( IWREM ) )
  294:          IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
  295:          CURR = CURR + 1
  296:          IF( INFO.GT.0 ) THEN
  297:             INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
  298:             RETURN
  299:          END IF
  300:          K = 1
  301:          DO 60 J = SUBMAT, IWORK( I+1 )
  302:             IWORK( INDXQ+J ) = K
  303:             K = K + 1
  304:    60    CONTINUE
  305:    70 CONTINUE
  306: *
  307: *     Successively merge eigensystems of adjacent submatrices
  308: *     into eigensystem for the corresponding larger matrix.
  309: *
  310: *     while ( SUBPBS > 1 )
  311: *
  312:       CURLVL = 1
  313:    80 CONTINUE
  314:       IF( SUBPBS.GT.1 ) THEN
  315:          SPM2 = SUBPBS - 2
  316:          DO 90 I = 0, SPM2, 2
  317:             IF( I.EQ.0 ) THEN
  318:                SUBMAT = 1
  319:                MATSIZ = IWORK( 2 )
  320:                MSD2 = IWORK( 1 )
  321:                CURPRB = 0
  322:             ELSE
  323:                SUBMAT = IWORK( I ) + 1
  324:                MATSIZ = IWORK( I+2 ) - IWORK( I )
  325:                MSD2 = MATSIZ / 2
  326:                CURPRB = CURPRB + 1
  327:             END IF
  328: *
  329: *     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
  330: *     into an eigensystem of size MATSIZ.  ZLAED7 handles the case
  331: *     when the eigenvectors of a full or band Hermitian matrix (which
  332: *     was reduced to tridiagonal form) are desired.
  333: *
  334: *     I am free to use Q as a valuable working space until Loop 150.
  335: *
  336:             CALL ZLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
  337:      $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
  338:      $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
  339:      $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
  340:      $                   IWORK( IPERM ), IWORK( IGIVPT ),
  341:      $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
  342:      $                   Q( 1, SUBMAT ), RWORK( IWREM ),
  343:      $                   IWORK( SUBPBS+1 ), INFO )
  344:             IF( INFO.GT.0 ) THEN
  345:                INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
  346:                RETURN
  347:             END IF
  348:             IWORK( I / 2+1 ) = IWORK( I+2 )
  349:    90    CONTINUE
  350:          SUBPBS = SUBPBS / 2
  351:          CURLVL = CURLVL + 1
  352:          GO TO 80
  353:       END IF
  354: *
  355: *     end while
  356: *
  357: *     Re-merge the eigenvalues/vectors which were deflated at the final
  358: *     merge step.
  359: *
  360:       DO 100 I = 1, N
  361:          J = IWORK( INDXQ+I )
  362:          RWORK( I ) = D( J )
  363:          CALL ZCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
  364:   100 CONTINUE
  365:       CALL DCOPY( N, RWORK, 1, D, 1 )
  366: *
  367:       RETURN
  368: *
  369: *     End of ZLAED0
  370: *
  371:       END

CVSweb interface <joel.bertrand@systella.fr>