Annotation of rpl/lapack/lapack/zlaed0.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b ZLAED0
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZLAED0 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaed0.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaed0.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaed0.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
        !            22: *                          IWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDQ, LDQS, N, QSIZ
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            IWORK( * )
        !            29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
        !            30: *       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> Using the divide and conquer method, ZLAED0 computes all eigenvalues
        !            40: *> of a symmetric tridiagonal matrix which is one diagonal block of
        !            41: *> those from reducing a dense or band Hermitian matrix and
        !            42: *> corresponding eigenvectors of the dense or band matrix.
        !            43: *> \endverbatim
        !            44: *
        !            45: *  Arguments:
        !            46: *  ==========
        !            47: *
        !            48: *> \param[in] QSIZ
        !            49: *> \verbatim
        !            50: *>          QSIZ is INTEGER
        !            51: *>         The dimension of the unitary matrix used to reduce
        !            52: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
        !            53: *> \endverbatim
        !            54: *>
        !            55: *> \param[in] N
        !            56: *> \verbatim
        !            57: *>          N is INTEGER
        !            58: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            59: *> \endverbatim
        !            60: *>
        !            61: *> \param[in,out] D
        !            62: *> \verbatim
        !            63: *>          D is DOUBLE PRECISION array, dimension (N)
        !            64: *>         On entry, the diagonal elements of the tridiagonal matrix.
        !            65: *>         On exit, the eigenvalues in ascending order.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in,out] E
        !            69: *> \verbatim
        !            70: *>          E is DOUBLE PRECISION array, dimension (N-1)
        !            71: *>         On entry, the off-diagonal elements of the tridiagonal matrix.
        !            72: *>         On exit, E has been destroyed.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in,out] Q
        !            76: *> \verbatim
        !            77: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
        !            78: *>         On entry, Q must contain an QSIZ x N matrix whose columns
        !            79: *>         unitarily orthonormal. It is a part of the unitary matrix
        !            80: *>         that reduces the full dense Hermitian matrix to a
        !            81: *>         (reducible) symmetric tridiagonal matrix.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] LDQ
        !            85: *> \verbatim
        !            86: *>          LDQ is INTEGER
        !            87: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[out] IWORK
        !            91: *> \verbatim
        !            92: *>          IWORK is INTEGER array,
        !            93: *>         the dimension of IWORK must be at least
        !            94: *>                      6 + 6*N + 5*N*lg N
        !            95: *>                      ( lg( N ) = smallest integer k
        !            96: *>                                  such that 2^k >= N )
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[out] RWORK
        !           100: *> \verbatim
        !           101: *>          RWORK is DOUBLE PRECISION array,
        !           102: *>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
        !           103: *>                        ( lg( N ) = smallest integer k
        !           104: *>                                    such that 2^k >= N )
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[out] QSTORE
        !           108: *> \verbatim
        !           109: *>          QSTORE is COMPLEX*16 array, dimension (LDQS, N)
        !           110: *>         Used to store parts of
        !           111: *>         the eigenvector matrix when the updating matrix multiplies
        !           112: *>         take place.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in] LDQS
        !           116: *> \verbatim
        !           117: *>          LDQS is INTEGER
        !           118: *>         The leading dimension of the array QSTORE.
        !           119: *>         LDQS >= max(1,N).
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[out] INFO
        !           123: *> \verbatim
        !           124: *>          INFO is INTEGER
        !           125: *>          = 0:  successful exit.
        !           126: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           127: *>          > 0:  The algorithm failed to compute an eigenvalue while
        !           128: *>                working on the submatrix lying in rows and columns
        !           129: *>                INFO/(N+1) through mod(INFO,N+1).
        !           130: *> \endverbatim
        !           131: *
        !           132: *  Authors:
        !           133: *  ========
        !           134: *
        !           135: *> \author Univ. of Tennessee 
        !           136: *> \author Univ. of California Berkeley 
        !           137: *> \author Univ. of Colorado Denver 
        !           138: *> \author NAG Ltd. 
        !           139: *
        !           140: *> \date November 2011
        !           141: *
        !           142: *> \ingroup complex16OTHERcomputational
        !           143: *
        !           144: *  =====================================================================
1.1       bertrand  145:       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
                    146:      $                   IWORK, INFO )
                    147: *
1.8     ! bertrand  148: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  149: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  151: *     November 2011
1.1       bertrand  152: *
                    153: *     .. Scalar Arguments ..
                    154:       INTEGER            INFO, LDQ, LDQS, N, QSIZ
                    155: *     ..
                    156: *     .. Array Arguments ..
                    157:       INTEGER            IWORK( * )
                    158:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
                    159:       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
                    160: *     ..
                    161: *
                    162: *  =====================================================================
                    163: *
                    164: *  Warning:      N could be as big as QSIZ!
                    165: *
                    166: *     .. Parameters ..
                    167:       DOUBLE PRECISION   TWO
                    168:       PARAMETER          ( TWO = 2.D+0 )
                    169: *     ..
                    170: *     .. Local Scalars ..
                    171:       INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
                    172:      $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
                    173:      $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
                    174:      $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
                    175:       DOUBLE PRECISION   TEMP
                    176: *     ..
                    177: *     .. External Subroutines ..
                    178:       EXTERNAL           DCOPY, DSTEQR, XERBLA, ZCOPY, ZLACRM, ZLAED7
                    179: *     ..
                    180: *     .. External Functions ..
                    181:       INTEGER            ILAENV
                    182:       EXTERNAL           ILAENV
                    183: *     ..
                    184: *     .. Intrinsic Functions ..
                    185:       INTRINSIC          ABS, DBLE, INT, LOG, MAX
                    186: *     ..
                    187: *     .. Executable Statements ..
                    188: *
                    189: *     Test the input parameters.
                    190: *
                    191:       INFO = 0
                    192: *
                    193: *     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
                    194: *        INFO = -1
                    195: *     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
                    196: *    $        THEN
                    197:       IF( QSIZ.LT.MAX( 0, N ) ) THEN
                    198:          INFO = -1
                    199:       ELSE IF( N.LT.0 ) THEN
                    200:          INFO = -2
                    201:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    202:          INFO = -6
                    203:       ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
                    204:          INFO = -8
                    205:       END IF
                    206:       IF( INFO.NE.0 ) THEN
                    207:          CALL XERBLA( 'ZLAED0', -INFO )
                    208:          RETURN
                    209:       END IF
                    210: *
                    211: *     Quick return if possible
                    212: *
                    213:       IF( N.EQ.0 )
                    214:      $   RETURN
                    215: *
                    216:       SMLSIZ = ILAENV( 9, 'ZLAED0', ' ', 0, 0, 0, 0 )
                    217: *
                    218: *     Determine the size and placement of the submatrices, and save in
                    219: *     the leading elements of IWORK.
                    220: *
                    221:       IWORK( 1 ) = N
                    222:       SUBPBS = 1
                    223:       TLVLS = 0
                    224:    10 CONTINUE
                    225:       IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
                    226:          DO 20 J = SUBPBS, 1, -1
                    227:             IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
                    228:             IWORK( 2*J-1 ) = IWORK( J ) / 2
                    229:    20    CONTINUE
                    230:          TLVLS = TLVLS + 1
                    231:          SUBPBS = 2*SUBPBS
                    232:          GO TO 10
                    233:       END IF
                    234:       DO 30 J = 2, SUBPBS
                    235:          IWORK( J ) = IWORK( J ) + IWORK( J-1 )
                    236:    30 CONTINUE
                    237: *
                    238: *     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
                    239: *     using rank-1 modifications (cuts).
                    240: *
                    241:       SPM1 = SUBPBS - 1
                    242:       DO 40 I = 1, SPM1
                    243:          SUBMAT = IWORK( I ) + 1
                    244:          SMM1 = SUBMAT - 1
                    245:          D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
                    246:          D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
                    247:    40 CONTINUE
                    248: *
                    249:       INDXQ = 4*N + 3
                    250: *
                    251: *     Set up workspaces for eigenvalues only/accumulate new vectors
                    252: *     routine
                    253: *
                    254:       TEMP = LOG( DBLE( N ) ) / LOG( TWO )
                    255:       LGN = INT( TEMP )
                    256:       IF( 2**LGN.LT.N )
                    257:      $   LGN = LGN + 1
                    258:       IF( 2**LGN.LT.N )
                    259:      $   LGN = LGN + 1
                    260:       IPRMPT = INDXQ + N + 1
                    261:       IPERM = IPRMPT + N*LGN
                    262:       IQPTR = IPERM + N*LGN
                    263:       IGIVPT = IQPTR + N + 2
                    264:       IGIVCL = IGIVPT + N*LGN
                    265: *
                    266:       IGIVNM = 1
                    267:       IQ = IGIVNM + 2*N*LGN
                    268:       IWREM = IQ + N**2 + 1
                    269: *     Initialize pointers
                    270:       DO 50 I = 0, SUBPBS
                    271:          IWORK( IPRMPT+I ) = 1
                    272:          IWORK( IGIVPT+I ) = 1
                    273:    50 CONTINUE
                    274:       IWORK( IQPTR ) = 1
                    275: *
                    276: *     Solve each submatrix eigenproblem at the bottom of the divide and
                    277: *     conquer tree.
                    278: *
                    279:       CURR = 0
                    280:       DO 70 I = 0, SPM1
                    281:          IF( I.EQ.0 ) THEN
                    282:             SUBMAT = 1
                    283:             MATSIZ = IWORK( 1 )
                    284:          ELSE
                    285:             SUBMAT = IWORK( I ) + 1
                    286:             MATSIZ = IWORK( I+1 ) - IWORK( I )
                    287:          END IF
                    288:          LL = IQ - 1 + IWORK( IQPTR+CURR )
                    289:          CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
                    290:      $                RWORK( LL ), MATSIZ, RWORK, INFO )
                    291:          CALL ZLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
                    292:      $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
                    293:      $                RWORK( IWREM ) )
                    294:          IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
                    295:          CURR = CURR + 1
                    296:          IF( INFO.GT.0 ) THEN
                    297:             INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
                    298:             RETURN
                    299:          END IF
                    300:          K = 1
                    301:          DO 60 J = SUBMAT, IWORK( I+1 )
                    302:             IWORK( INDXQ+J ) = K
                    303:             K = K + 1
                    304:    60    CONTINUE
                    305:    70 CONTINUE
                    306: *
                    307: *     Successively merge eigensystems of adjacent submatrices
                    308: *     into eigensystem for the corresponding larger matrix.
                    309: *
                    310: *     while ( SUBPBS > 1 )
                    311: *
                    312:       CURLVL = 1
                    313:    80 CONTINUE
                    314:       IF( SUBPBS.GT.1 ) THEN
                    315:          SPM2 = SUBPBS - 2
                    316:          DO 90 I = 0, SPM2, 2
                    317:             IF( I.EQ.0 ) THEN
                    318:                SUBMAT = 1
                    319:                MATSIZ = IWORK( 2 )
                    320:                MSD2 = IWORK( 1 )
                    321:                CURPRB = 0
                    322:             ELSE
                    323:                SUBMAT = IWORK( I ) + 1
                    324:                MATSIZ = IWORK( I+2 ) - IWORK( I )
                    325:                MSD2 = MATSIZ / 2
                    326:                CURPRB = CURPRB + 1
                    327:             END IF
                    328: *
                    329: *     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
                    330: *     into an eigensystem of size MATSIZ.  ZLAED7 handles the case
                    331: *     when the eigenvectors of a full or band Hermitian matrix (which
                    332: *     was reduced to tridiagonal form) are desired.
                    333: *
                    334: *     I am free to use Q as a valuable working space until Loop 150.
                    335: *
                    336:             CALL ZLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
                    337:      $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
                    338:      $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
                    339:      $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
                    340:      $                   IWORK( IPERM ), IWORK( IGIVPT ),
                    341:      $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
                    342:      $                   Q( 1, SUBMAT ), RWORK( IWREM ),
                    343:      $                   IWORK( SUBPBS+1 ), INFO )
                    344:             IF( INFO.GT.0 ) THEN
                    345:                INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
                    346:                RETURN
                    347:             END IF
                    348:             IWORK( I / 2+1 ) = IWORK( I+2 )
                    349:    90    CONTINUE
                    350:          SUBPBS = SUBPBS / 2
                    351:          CURLVL = CURLVL + 1
                    352:          GO TO 80
                    353:       END IF
                    354: *
                    355: *     end while
                    356: *
                    357: *     Re-merge the eigenvalues/vectors which were deflated at the final
                    358: *     merge step.
                    359: *
                    360:       DO 100 I = 1, N
                    361:          J = IWORK( INDXQ+I )
                    362:          RWORK( I ) = D( J )
                    363:          CALL ZCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
                    364:   100 CONTINUE
                    365:       CALL DCOPY( N, RWORK, 1, D, 1 )
                    366: *
                    367:       RETURN
                    368: *
                    369: *     End of ZLAED0
                    370: *
                    371:       END

CVSweb interface <joel.bertrand@systella.fr>