Annotation of rpl/lapack/lapack/zlaed0.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
                      2:      $                   IWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDQ, LDQS, N, QSIZ
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            IWORK( * )
                     14:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
                     15:       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  Using the divide and conquer method, ZLAED0 computes all eigenvalues
                     22: *  of a symmetric tridiagonal matrix which is one diagonal block of
                     23: *  those from reducing a dense or band Hermitian matrix and
                     24: *  corresponding eigenvectors of the dense or band matrix.
                     25: *
                     26: *  Arguments
                     27: *  =========
                     28: *
                     29: *  QSIZ   (input) INTEGER
                     30: *         The dimension of the unitary matrix used to reduce
                     31: *         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
                     32: *
                     33: *  N      (input) INTEGER
                     34: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     35: *
                     36: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
                     37: *         On entry, the diagonal elements of the tridiagonal matrix.
                     38: *         On exit, the eigenvalues in ascending order.
                     39: *
                     40: *  E      (input/output) DOUBLE PRECISION array, dimension (N-1)
                     41: *         On entry, the off-diagonal elements of the tridiagonal matrix.
                     42: *         On exit, E has been destroyed.
                     43: *
                     44: *  Q      (input/output) COMPLEX*16 array, dimension (LDQ,N)
                     45: *         On entry, Q must contain an QSIZ x N matrix whose columns
                     46: *         unitarily orthonormal. It is a part of the unitary matrix
                     47: *         that reduces the full dense Hermitian matrix to a
                     48: *         (reducible) symmetric tridiagonal matrix.
                     49: *
                     50: *  LDQ    (input) INTEGER
                     51: *         The leading dimension of the array Q.  LDQ >= max(1,N).
                     52: *
                     53: *  IWORK  (workspace) INTEGER array,
                     54: *         the dimension of IWORK must be at least
                     55: *                      6 + 6*N + 5*N*lg N
                     56: *                      ( lg( N ) = smallest integer k
                     57: *                                  such that 2^k >= N )
                     58: *
                     59: *  RWORK  (workspace) DOUBLE PRECISION array,
                     60: *                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
                     61: *                        ( lg( N ) = smallest integer k
                     62: *                                    such that 2^k >= N )
                     63: *
                     64: *  QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N)
                     65: *         Used to store parts of
                     66: *         the eigenvector matrix when the updating matrix multiplies
                     67: *         take place.
                     68: *
                     69: *  LDQS   (input) INTEGER
                     70: *         The leading dimension of the array QSTORE.
                     71: *         LDQS >= max(1,N).
                     72: *
                     73: *  INFO   (output) INTEGER
                     74: *          = 0:  successful exit.
                     75: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     76: *          > 0:  The algorithm failed to compute an eigenvalue while
                     77: *                working on the submatrix lying in rows and columns
                     78: *                INFO/(N+1) through mod(INFO,N+1).
                     79: *
                     80: *  =====================================================================
                     81: *
                     82: *  Warning:      N could be as big as QSIZ!
                     83: *
                     84: *     .. Parameters ..
                     85:       DOUBLE PRECISION   TWO
                     86:       PARAMETER          ( TWO = 2.D+0 )
                     87: *     ..
                     88: *     .. Local Scalars ..
                     89:       INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
                     90:      $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
                     91:      $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
                     92:      $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
                     93:       DOUBLE PRECISION   TEMP
                     94: *     ..
                     95: *     .. External Subroutines ..
                     96:       EXTERNAL           DCOPY, DSTEQR, XERBLA, ZCOPY, ZLACRM, ZLAED7
                     97: *     ..
                     98: *     .. External Functions ..
                     99:       INTEGER            ILAENV
                    100:       EXTERNAL           ILAENV
                    101: *     ..
                    102: *     .. Intrinsic Functions ..
                    103:       INTRINSIC          ABS, DBLE, INT, LOG, MAX
                    104: *     ..
                    105: *     .. Executable Statements ..
                    106: *
                    107: *     Test the input parameters.
                    108: *
                    109:       INFO = 0
                    110: *
                    111: *     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
                    112: *        INFO = -1
                    113: *     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
                    114: *    $        THEN
                    115:       IF( QSIZ.LT.MAX( 0, N ) ) THEN
                    116:          INFO = -1
                    117:       ELSE IF( N.LT.0 ) THEN
                    118:          INFO = -2
                    119:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    120:          INFO = -6
                    121:       ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
                    122:          INFO = -8
                    123:       END IF
                    124:       IF( INFO.NE.0 ) THEN
                    125:          CALL XERBLA( 'ZLAED0', -INFO )
                    126:          RETURN
                    127:       END IF
                    128: *
                    129: *     Quick return if possible
                    130: *
                    131:       IF( N.EQ.0 )
                    132:      $   RETURN
                    133: *
                    134:       SMLSIZ = ILAENV( 9, 'ZLAED0', ' ', 0, 0, 0, 0 )
                    135: *
                    136: *     Determine the size and placement of the submatrices, and save in
                    137: *     the leading elements of IWORK.
                    138: *
                    139:       IWORK( 1 ) = N
                    140:       SUBPBS = 1
                    141:       TLVLS = 0
                    142:    10 CONTINUE
                    143:       IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
                    144:          DO 20 J = SUBPBS, 1, -1
                    145:             IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
                    146:             IWORK( 2*J-1 ) = IWORK( J ) / 2
                    147:    20    CONTINUE
                    148:          TLVLS = TLVLS + 1
                    149:          SUBPBS = 2*SUBPBS
                    150:          GO TO 10
                    151:       END IF
                    152:       DO 30 J = 2, SUBPBS
                    153:          IWORK( J ) = IWORK( J ) + IWORK( J-1 )
                    154:    30 CONTINUE
                    155: *
                    156: *     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
                    157: *     using rank-1 modifications (cuts).
                    158: *
                    159:       SPM1 = SUBPBS - 1
                    160:       DO 40 I = 1, SPM1
                    161:          SUBMAT = IWORK( I ) + 1
                    162:          SMM1 = SUBMAT - 1
                    163:          D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
                    164:          D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
                    165:    40 CONTINUE
                    166: *
                    167:       INDXQ = 4*N + 3
                    168: *
                    169: *     Set up workspaces for eigenvalues only/accumulate new vectors
                    170: *     routine
                    171: *
                    172:       TEMP = LOG( DBLE( N ) ) / LOG( TWO )
                    173:       LGN = INT( TEMP )
                    174:       IF( 2**LGN.LT.N )
                    175:      $   LGN = LGN + 1
                    176:       IF( 2**LGN.LT.N )
                    177:      $   LGN = LGN + 1
                    178:       IPRMPT = INDXQ + N + 1
                    179:       IPERM = IPRMPT + N*LGN
                    180:       IQPTR = IPERM + N*LGN
                    181:       IGIVPT = IQPTR + N + 2
                    182:       IGIVCL = IGIVPT + N*LGN
                    183: *
                    184:       IGIVNM = 1
                    185:       IQ = IGIVNM + 2*N*LGN
                    186:       IWREM = IQ + N**2 + 1
                    187: *     Initialize pointers
                    188:       DO 50 I = 0, SUBPBS
                    189:          IWORK( IPRMPT+I ) = 1
                    190:          IWORK( IGIVPT+I ) = 1
                    191:    50 CONTINUE
                    192:       IWORK( IQPTR ) = 1
                    193: *
                    194: *     Solve each submatrix eigenproblem at the bottom of the divide and
                    195: *     conquer tree.
                    196: *
                    197:       CURR = 0
                    198:       DO 70 I = 0, SPM1
                    199:          IF( I.EQ.0 ) THEN
                    200:             SUBMAT = 1
                    201:             MATSIZ = IWORK( 1 )
                    202:          ELSE
                    203:             SUBMAT = IWORK( I ) + 1
                    204:             MATSIZ = IWORK( I+1 ) - IWORK( I )
                    205:          END IF
                    206:          LL = IQ - 1 + IWORK( IQPTR+CURR )
                    207:          CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
                    208:      $                RWORK( LL ), MATSIZ, RWORK, INFO )
                    209:          CALL ZLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
                    210:      $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
                    211:      $                RWORK( IWREM ) )
                    212:          IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
                    213:          CURR = CURR + 1
                    214:          IF( INFO.GT.0 ) THEN
                    215:             INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
                    216:             RETURN
                    217:          END IF
                    218:          K = 1
                    219:          DO 60 J = SUBMAT, IWORK( I+1 )
                    220:             IWORK( INDXQ+J ) = K
                    221:             K = K + 1
                    222:    60    CONTINUE
                    223:    70 CONTINUE
                    224: *
                    225: *     Successively merge eigensystems of adjacent submatrices
                    226: *     into eigensystem for the corresponding larger matrix.
                    227: *
                    228: *     while ( SUBPBS > 1 )
                    229: *
                    230:       CURLVL = 1
                    231:    80 CONTINUE
                    232:       IF( SUBPBS.GT.1 ) THEN
                    233:          SPM2 = SUBPBS - 2
                    234:          DO 90 I = 0, SPM2, 2
                    235:             IF( I.EQ.0 ) THEN
                    236:                SUBMAT = 1
                    237:                MATSIZ = IWORK( 2 )
                    238:                MSD2 = IWORK( 1 )
                    239:                CURPRB = 0
                    240:             ELSE
                    241:                SUBMAT = IWORK( I ) + 1
                    242:                MATSIZ = IWORK( I+2 ) - IWORK( I )
                    243:                MSD2 = MATSIZ / 2
                    244:                CURPRB = CURPRB + 1
                    245:             END IF
                    246: *
                    247: *     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
                    248: *     into an eigensystem of size MATSIZ.  ZLAED7 handles the case
                    249: *     when the eigenvectors of a full or band Hermitian matrix (which
                    250: *     was reduced to tridiagonal form) are desired.
                    251: *
                    252: *     I am free to use Q as a valuable working space until Loop 150.
                    253: *
                    254:             CALL ZLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
                    255:      $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
                    256:      $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
                    257:      $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
                    258:      $                   IWORK( IPERM ), IWORK( IGIVPT ),
                    259:      $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
                    260:      $                   Q( 1, SUBMAT ), RWORK( IWREM ),
                    261:      $                   IWORK( SUBPBS+1 ), INFO )
                    262:             IF( INFO.GT.0 ) THEN
                    263:                INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
                    264:                RETURN
                    265:             END IF
                    266:             IWORK( I / 2+1 ) = IWORK( I+2 )
                    267:    90    CONTINUE
                    268:          SUBPBS = SUBPBS / 2
                    269:          CURLVL = CURLVL + 1
                    270:          GO TO 80
                    271:       END IF
                    272: *
                    273: *     end while
                    274: *
                    275: *     Re-merge the eigenvalues/vectors which were deflated at the final
                    276: *     merge step.
                    277: *
                    278:       DO 100 I = 1, N
                    279:          J = IWORK( INDXQ+I )
                    280:          RWORK( I ) = D( J )
                    281:          CALL ZCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
                    282:   100 CONTINUE
                    283:       CALL DCOPY( N, RWORK, 1, D, 1 )
                    284: *
                    285:       RETURN
                    286: *
                    287: *     End of ZLAED0
                    288: *
                    289:       END

CVSweb interface <joel.bertrand@systella.fr>