File:  [local] / rpl / lapack / lapack / zlabrd.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:34 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZLABRD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLABRD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlabrd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlabrd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlabrd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
   22: *                          LDY )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            LDA, LDX, LDY, M, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   D( * ), E( * )
   29: *       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
   30: *      $                   Y( LDY, * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZLABRD reduces the first NB rows and columns of a complex general
   40: *> m by n matrix A to upper or lower real bidiagonal form by a unitary
   41: *> transformation Q**H * A * P, and returns the matrices X and Y which
   42: *> are needed to apply the transformation to the unreduced part of A.
   43: *>
   44: *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
   45: *> bidiagonal form.
   46: *>
   47: *> This is an auxiliary routine called by ZGEBRD
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] M
   54: *> \verbatim
   55: *>          M is INTEGER
   56: *>          The number of rows in the matrix A.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] N
   60: *> \verbatim
   61: *>          N is INTEGER
   62: *>          The number of columns in the matrix A.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] NB
   66: *> \verbatim
   67: *>          NB is INTEGER
   68: *>          The number of leading rows and columns of A to be reduced.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          On entry, the m by n general matrix to be reduced.
   75: *>          On exit, the first NB rows and columns of the matrix are
   76: *>          overwritten; the rest of the array is unchanged.
   77: *>          If m >= n, elements on and below the diagonal in the first NB
   78: *>            columns, with the array TAUQ, represent the unitary
   79: *>            matrix Q as a product of elementary reflectors; and
   80: *>            elements above the diagonal in the first NB rows, with the
   81: *>            array TAUP, represent the unitary matrix P as a product
   82: *>            of elementary reflectors.
   83: *>          If m < n, elements below the diagonal in the first NB
   84: *>            columns, with the array TAUQ, represent the unitary
   85: *>            matrix Q as a product of elementary reflectors, and
   86: *>            elements on and above the diagonal in the first NB rows,
   87: *>            with the array TAUP, represent the unitary matrix P as
   88: *>            a product of elementary reflectors.
   89: *>          See Further Details.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDA
   93: *> \verbatim
   94: *>          LDA is INTEGER
   95: *>          The leading dimension of the array A.  LDA >= max(1,M).
   96: *> \endverbatim
   97: *>
   98: *> \param[out] D
   99: *> \verbatim
  100: *>          D is DOUBLE PRECISION array, dimension (NB)
  101: *>          The diagonal elements of the first NB rows and columns of
  102: *>          the reduced matrix.  D(i) = A(i,i).
  103: *> \endverbatim
  104: *>
  105: *> \param[out] E
  106: *> \verbatim
  107: *>          E is DOUBLE PRECISION array, dimension (NB)
  108: *>          The off-diagonal elements of the first NB rows and columns of
  109: *>          the reduced matrix.
  110: *> \endverbatim
  111: *>
  112: *> \param[out] TAUQ
  113: *> \verbatim
  114: *>          TAUQ is COMPLEX*16 array dimension (NB)
  115: *>          The scalar factors of the elementary reflectors which
  116: *>          represent the unitary matrix Q. See Further Details.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] TAUP
  120: *> \verbatim
  121: *>          TAUP is COMPLEX*16 array, dimension (NB)
  122: *>          The scalar factors of the elementary reflectors which
  123: *>          represent the unitary matrix P. See Further Details.
  124: *> \endverbatim
  125: *>
  126: *> \param[out] X
  127: *> \verbatim
  128: *>          X is COMPLEX*16 array, dimension (LDX,NB)
  129: *>          The m-by-nb matrix X required to update the unreduced part
  130: *>          of A.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDX
  134: *> \verbatim
  135: *>          LDX is INTEGER
  136: *>          The leading dimension of the array X. LDX >= max(1,M).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] Y
  140: *> \verbatim
  141: *>          Y is COMPLEX*16 array, dimension (LDY,NB)
  142: *>          The n-by-nb matrix Y required to update the unreduced part
  143: *>          of A.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDY
  147: *> \verbatim
  148: *>          LDY is INTEGER
  149: *>          The leading dimension of the array Y. LDY >= max(1,N).
  150: *> \endverbatim
  151: *
  152: *  Authors:
  153: *  ========
  154: *
  155: *> \author Univ. of Tennessee 
  156: *> \author Univ. of California Berkeley 
  157: *> \author Univ. of Colorado Denver 
  158: *> \author NAG Ltd. 
  159: *
  160: *> \date November 2011
  161: *
  162: *> \ingroup complex16OTHERauxiliary
  163: *
  164: *> \par Further Details:
  165: *  =====================
  166: *>
  167: *> \verbatim
  168: *>
  169: *>  The matrices Q and P are represented as products of elementary
  170: *>  reflectors:
  171: *>
  172: *>     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
  173: *>
  174: *>  Each H(i) and G(i) has the form:
  175: *>
  176: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
  177: *>
  178: *>  where tauq and taup are complex scalars, and v and u are complex
  179: *>  vectors.
  180: *>
  181: *>  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
  182: *>  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
  183: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  184: *>
  185: *>  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
  186: *>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
  187: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  188: *>
  189: *>  The elements of the vectors v and u together form the m-by-nb matrix
  190: *>  V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
  191: *>  the transformation to the unreduced part of the matrix, using a block
  192: *>  update of the form:  A := A - V*Y**H - X*U**H.
  193: *>
  194: *>  The contents of A on exit are illustrated by the following examples
  195: *>  with nb = 2:
  196: *>
  197: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  198: *>
  199: *>    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
  200: *>    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
  201: *>    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
  202: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
  203: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
  204: *>    (  v1  v2  a   a   a  )
  205: *>
  206: *>  where a denotes an element of the original matrix which is unchanged,
  207: *>  vi denotes an element of the vector defining H(i), and ui an element
  208: *>  of the vector defining G(i).
  209: *> \endverbatim
  210: *>
  211: *  =====================================================================
  212:       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
  213:      $                   LDY )
  214: *
  215: *  -- LAPACK auxiliary routine (version 3.4.0) --
  216: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  217: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  218: *     November 2011
  219: *
  220: *     .. Scalar Arguments ..
  221:       INTEGER            LDA, LDX, LDY, M, N, NB
  222: *     ..
  223: *     .. Array Arguments ..
  224:       DOUBLE PRECISION   D( * ), E( * )
  225:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
  226:      $                   Y( LDY, * )
  227: *     ..
  228: *
  229: *  =====================================================================
  230: *
  231: *     .. Parameters ..
  232:       COMPLEX*16         ZERO, ONE
  233:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
  234:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
  235: *     ..
  236: *     .. Local Scalars ..
  237:       INTEGER            I
  238:       COMPLEX*16         ALPHA
  239: *     ..
  240: *     .. External Subroutines ..
  241:       EXTERNAL           ZGEMV, ZLACGV, ZLARFG, ZSCAL
  242: *     ..
  243: *     .. Intrinsic Functions ..
  244:       INTRINSIC          MIN
  245: *     ..
  246: *     .. Executable Statements ..
  247: *
  248: *     Quick return if possible
  249: *
  250:       IF( M.LE.0 .OR. N.LE.0 )
  251:      $   RETURN
  252: *
  253:       IF( M.GE.N ) THEN
  254: *
  255: *        Reduce to upper bidiagonal form
  256: *
  257:          DO 10 I = 1, NB
  258: *
  259: *           Update A(i:m,i)
  260: *
  261:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  262:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
  263:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
  264:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  265:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
  266:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
  267: *
  268: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
  269: *
  270:             ALPHA = A( I, I )
  271:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
  272:      $                   TAUQ( I ) )
  273:             D( I ) = ALPHA
  274:             IF( I.LT.N ) THEN
  275:                A( I, I ) = ONE
  276: *
  277: *              Compute Y(i+1:n,i)
  278: *
  279:                CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
  280:      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
  281:      $                     Y( I+1, I ), 1 )
  282:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
  283:      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
  284:      $                     Y( 1, I ), 1 )
  285:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
  286:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  287:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
  288:      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
  289:      $                     Y( 1, I ), 1 )
  290:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
  291:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
  292:      $                     Y( I+1, I ), 1 )
  293:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
  294: *
  295: *              Update A(i,i+1:n)
  296: *
  297:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  298:                CALL ZLACGV( I, A( I, 1 ), LDA )
  299:                CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
  300:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
  301:                CALL ZLACGV( I, A( I, 1 ), LDA )
  302:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
  303:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
  304:      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
  305:      $                     A( I, I+1 ), LDA )
  306:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
  307: *
  308: *              Generate reflection P(i) to annihilate A(i,i+2:n)
  309: *
  310:                ALPHA = A( I, I+1 )
  311:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
  312:      $                      TAUP( I ) )
  313:                E( I ) = ALPHA
  314:                A( I, I+1 ) = ONE
  315: *
  316: *              Compute X(i+1:m,i)
  317: *
  318:                CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
  319:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
  320:                CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
  321:      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
  322:      $                     X( 1, I ), 1 )
  323:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
  324:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  325:                CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
  326:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
  327:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
  328:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  329:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
  330:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  331:             END IF
  332:    10    CONTINUE
  333:       ELSE
  334: *
  335: *        Reduce to lower bidiagonal form
  336: *
  337:          DO 20 I = 1, NB
  338: *
  339: *           Update A(i,i:n)
  340: *
  341:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  342:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
  343:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
  344:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
  345:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
  346:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
  347:             CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
  348:      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
  349:      $                  LDA )
  350:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
  351: *
  352: *           Generate reflection P(i) to annihilate A(i,i+1:n)
  353: *
  354:             ALPHA = A( I, I )
  355:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
  356:      $                   TAUP( I ) )
  357:             D( I ) = ALPHA
  358:             IF( I.LT.M ) THEN
  359:                A( I, I ) = ONE
  360: *
  361: *              Compute X(i+1:m,i)
  362: *
  363:                CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
  364:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
  365:                CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
  366:      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
  367:      $                     X( 1, I ), 1 )
  368:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
  369:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  370:                CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
  371:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
  372:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
  373:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  374:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
  375:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
  376: *
  377: *              Update A(i+1:m,i)
  378: *
  379:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  380:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
  381:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
  382:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  383:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
  384:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
  385: *
  386: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
  387: *
  388:                ALPHA = A( I+1, I )
  389:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
  390:      $                      TAUQ( I ) )
  391:                E( I ) = ALPHA
  392:                A( I+1, I ) = ONE
  393: *
  394: *              Compute Y(i+1:n,i)
  395: *
  396:                CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
  397:      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
  398:      $                     Y( I+1, I ), 1 )
  399:                CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
  400:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
  401:      $                     Y( 1, I ), 1 )
  402:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
  403:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  404:                CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
  405:      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
  406:      $                     Y( 1, I ), 1 )
  407:                CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
  408:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
  409:      $                     Y( I+1, I ), 1 )
  410:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
  411:             ELSE
  412:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
  413:             END IF
  414:    20    CONTINUE
  415:       END IF
  416:       RETURN
  417: *
  418: *     End of ZLABRD
  419: *
  420:       END

CVSweb interface <joel.bertrand@systella.fr>