File:  [local] / rpl / lapack / lapack / zlabrd.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
    2:      $                   LDY )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            LDA, LDX, LDY, M, N, NB
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   D( * ), E( * )
   14:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
   15:      $                   Y( LDY, * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  ZLABRD reduces the first NB rows and columns of a complex general
   22: *  m by n matrix A to upper or lower real bidiagonal form by a unitary
   23: *  transformation Q' * A * P, and returns the matrices X and Y which
   24: *  are needed to apply the transformation to the unreduced part of A.
   25: *
   26: *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
   27: *  bidiagonal form.
   28: *
   29: *  This is an auxiliary routine called by ZGEBRD
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  M       (input) INTEGER
   35: *          The number of rows in the matrix A.
   36: *
   37: *  N       (input) INTEGER
   38: *          The number of columns in the matrix A.
   39: *
   40: *  NB      (input) INTEGER
   41: *          The number of leading rows and columns of A to be reduced.
   42: *
   43: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   44: *          On entry, the m by n general matrix to be reduced.
   45: *          On exit, the first NB rows and columns of the matrix are
   46: *          overwritten; the rest of the array is unchanged.
   47: *          If m >= n, elements on and below the diagonal in the first NB
   48: *            columns, with the array TAUQ, represent the unitary
   49: *            matrix Q as a product of elementary reflectors; and
   50: *            elements above the diagonal in the first NB rows, with the
   51: *            array TAUP, represent the unitary matrix P as a product
   52: *            of elementary reflectors.
   53: *          If m < n, elements below the diagonal in the first NB
   54: *            columns, with the array TAUQ, represent the unitary
   55: *            matrix Q as a product of elementary reflectors, and
   56: *            elements on and above the diagonal in the first NB rows,
   57: *            with the array TAUP, represent the unitary matrix P as
   58: *            a product of elementary reflectors.
   59: *          See Further Details.
   60: *
   61: *  LDA     (input) INTEGER
   62: *          The leading dimension of the array A.  LDA >= max(1,M).
   63: *
   64: *  D       (output) DOUBLE PRECISION array, dimension (NB)
   65: *          The diagonal elements of the first NB rows and columns of
   66: *          the reduced matrix.  D(i) = A(i,i).
   67: *
   68: *  E       (output) DOUBLE PRECISION array, dimension (NB)
   69: *          The off-diagonal elements of the first NB rows and columns of
   70: *          the reduced matrix.
   71: *
   72: *  TAUQ    (output) COMPLEX*16 array dimension (NB)
   73: *          The scalar factors of the elementary reflectors which
   74: *          represent the unitary matrix Q. See Further Details.
   75: *
   76: *  TAUP    (output) COMPLEX*16 array, dimension (NB)
   77: *          The scalar factors of the elementary reflectors which
   78: *          represent the unitary matrix P. See Further Details.
   79: *
   80: *  X       (output) COMPLEX*16 array, dimension (LDX,NB)
   81: *          The m-by-nb matrix X required to update the unreduced part
   82: *          of A.
   83: *
   84: *  LDX     (input) INTEGER
   85: *          The leading dimension of the array X. LDX >= max(1,M).
   86: *
   87: *  Y       (output) COMPLEX*16 array, dimension (LDY,NB)
   88: *          The n-by-nb matrix Y required to update the unreduced part
   89: *          of A.
   90: *
   91: *  LDY     (input) INTEGER
   92: *          The leading dimension of the array Y. LDY >= max(1,N).
   93: *
   94: *  Further Details
   95: *  ===============
   96: *
   97: *  The matrices Q and P are represented as products of elementary
   98: *  reflectors:
   99: *
  100: *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
  101: *
  102: *  Each H(i) and G(i) has the form:
  103: *
  104: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
  105: *
  106: *  where tauq and taup are complex scalars, and v and u are complex
  107: *  vectors.
  108: *
  109: *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
  110: *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
  111: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  112: *
  113: *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
  114: *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
  115: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  116: *
  117: *  The elements of the vectors v and u together form the m-by-nb matrix
  118: *  V and the nb-by-n matrix U' which are needed, with X and Y, to apply
  119: *  the transformation to the unreduced part of the matrix, using a block
  120: *  update of the form:  A := A - V*Y' - X*U'.
  121: *
  122: *  The contents of A on exit are illustrated by the following examples
  123: *  with nb = 2:
  124: *
  125: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  126: *
  127: *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
  128: *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
  129: *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
  130: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
  131: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
  132: *    (  v1  v2  a   a   a  )
  133: *
  134: *  where a denotes an element of the original matrix which is unchanged,
  135: *  vi denotes an element of the vector defining H(i), and ui an element
  136: *  of the vector defining G(i).
  137: *
  138: *  =====================================================================
  139: *
  140: *     .. Parameters ..
  141:       COMPLEX*16         ZERO, ONE
  142:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
  143:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
  144: *     ..
  145: *     .. Local Scalars ..
  146:       INTEGER            I
  147:       COMPLEX*16         ALPHA
  148: *     ..
  149: *     .. External Subroutines ..
  150:       EXTERNAL           ZGEMV, ZLACGV, ZLARFG, ZSCAL
  151: *     ..
  152: *     .. Intrinsic Functions ..
  153:       INTRINSIC          MIN
  154: *     ..
  155: *     .. Executable Statements ..
  156: *
  157: *     Quick return if possible
  158: *
  159:       IF( M.LE.0 .OR. N.LE.0 )
  160:      $   RETURN
  161: *
  162:       IF( M.GE.N ) THEN
  163: *
  164: *        Reduce to upper bidiagonal form
  165: *
  166:          DO 10 I = 1, NB
  167: *
  168: *           Update A(i:m,i)
  169: *
  170:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  171:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
  172:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
  173:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  174:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
  175:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
  176: *
  177: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
  178: *
  179:             ALPHA = A( I, I )
  180:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
  181:      $                   TAUQ( I ) )
  182:             D( I ) = ALPHA
  183:             IF( I.LT.N ) THEN
  184:                A( I, I ) = ONE
  185: *
  186: *              Compute Y(i+1:n,i)
  187: *
  188:                CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
  189:      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
  190:      $                     Y( I+1, I ), 1 )
  191:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
  192:      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
  193:      $                     Y( 1, I ), 1 )
  194:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
  195:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  196:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
  197:      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
  198:      $                     Y( 1, I ), 1 )
  199:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
  200:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
  201:      $                     Y( I+1, I ), 1 )
  202:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
  203: *
  204: *              Update A(i,i+1:n)
  205: *
  206:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  207:                CALL ZLACGV( I, A( I, 1 ), LDA )
  208:                CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
  209:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
  210:                CALL ZLACGV( I, A( I, 1 ), LDA )
  211:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
  212:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
  213:      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
  214:      $                     A( I, I+1 ), LDA )
  215:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
  216: *
  217: *              Generate reflection P(i) to annihilate A(i,i+2:n)
  218: *
  219:                ALPHA = A( I, I+1 )
  220:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
  221:      $                      TAUP( I ) )
  222:                E( I ) = ALPHA
  223:                A( I, I+1 ) = ONE
  224: *
  225: *              Compute X(i+1:m,i)
  226: *
  227:                CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
  228:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
  229:                CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
  230:      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
  231:      $                     X( 1, I ), 1 )
  232:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
  233:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  234:                CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
  235:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
  236:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
  237:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  238:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
  239:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  240:             END IF
  241:    10    CONTINUE
  242:       ELSE
  243: *
  244: *        Reduce to lower bidiagonal form
  245: *
  246:          DO 20 I = 1, NB
  247: *
  248: *           Update A(i,i:n)
  249: *
  250:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  251:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
  252:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
  253:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
  254:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
  255:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
  256:             CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
  257:      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
  258:      $                  LDA )
  259:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
  260: *
  261: *           Generate reflection P(i) to annihilate A(i,i+1:n)
  262: *
  263:             ALPHA = A( I, I )
  264:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
  265:      $                   TAUP( I ) )
  266:             D( I ) = ALPHA
  267:             IF( I.LT.M ) THEN
  268:                A( I, I ) = ONE
  269: *
  270: *              Compute X(i+1:m,i)
  271: *
  272:                CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
  273:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
  274:                CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
  275:      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
  276:      $                     X( 1, I ), 1 )
  277:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
  278:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  279:                CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
  280:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
  281:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
  282:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  283:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
  284:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
  285: *
  286: *              Update A(i+1:m,i)
  287: *
  288:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  289:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
  290:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
  291:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
  292:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
  293:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
  294: *
  295: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
  296: *
  297:                ALPHA = A( I+1, I )
  298:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
  299:      $                      TAUQ( I ) )
  300:                E( I ) = ALPHA
  301:                A( I+1, I ) = ONE
  302: *
  303: *              Compute Y(i+1:n,i)
  304: *
  305:                CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
  306:      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
  307:      $                     Y( I+1, I ), 1 )
  308:                CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
  309:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
  310:      $                     Y( 1, I ), 1 )
  311:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
  312:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  313:                CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
  314:      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
  315:      $                     Y( 1, I ), 1 )
  316:                CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
  317:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
  318:      $                     Y( I+1, I ), 1 )
  319:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
  320:             ELSE
  321:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
  322:             END IF
  323:    20    CONTINUE
  324:       END IF
  325:       RETURN
  326: *
  327: *     End of ZLABRD
  328: *
  329:       END

CVSweb interface <joel.bertrand@systella.fr>