Annotation of rpl/lapack/lapack/zlabrd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZLABRD
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZLABRD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlabrd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlabrd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlabrd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
        !            22: *                          LDY )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            LDA, LDX, LDY, M, N, NB
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       DOUBLE PRECISION   D( * ), E( * )
        !            29: *       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
        !            30: *      $                   Y( LDY, * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> ZLABRD reduces the first NB rows and columns of a complex general
        !            40: *> m by n matrix A to upper or lower real bidiagonal form by a unitary
        !            41: *> transformation Q**H * A * P, and returns the matrices X and Y which
        !            42: *> are needed to apply the transformation to the unreduced part of A.
        !            43: *>
        !            44: *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
        !            45: *> bidiagonal form.
        !            46: *>
        !            47: *> This is an auxiliary routine called by ZGEBRD
        !            48: *> \endverbatim
        !            49: *
        !            50: *  Arguments:
        !            51: *  ==========
        !            52: *
        !            53: *> \param[in] M
        !            54: *> \verbatim
        !            55: *>          M is INTEGER
        !            56: *>          The number of rows in the matrix A.
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in] N
        !            60: *> \verbatim
        !            61: *>          N is INTEGER
        !            62: *>          The number of columns in the matrix A.
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in] NB
        !            66: *> \verbatim
        !            67: *>          NB is INTEGER
        !            68: *>          The number of leading rows and columns of A to be reduced.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in,out] A
        !            72: *> \verbatim
        !            73: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            74: *>          On entry, the m by n general matrix to be reduced.
        !            75: *>          On exit, the first NB rows and columns of the matrix are
        !            76: *>          overwritten; the rest of the array is unchanged.
        !            77: *>          If m >= n, elements on and below the diagonal in the first NB
        !            78: *>            columns, with the array TAUQ, represent the unitary
        !            79: *>            matrix Q as a product of elementary reflectors; and
        !            80: *>            elements above the diagonal in the first NB rows, with the
        !            81: *>            array TAUP, represent the unitary matrix P as a product
        !            82: *>            of elementary reflectors.
        !            83: *>          If m < n, elements below the diagonal in the first NB
        !            84: *>            columns, with the array TAUQ, represent the unitary
        !            85: *>            matrix Q as a product of elementary reflectors, and
        !            86: *>            elements on and above the diagonal in the first NB rows,
        !            87: *>            with the array TAUP, represent the unitary matrix P as
        !            88: *>            a product of elementary reflectors.
        !            89: *>          See Further Details.
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] LDA
        !            93: *> \verbatim
        !            94: *>          LDA is INTEGER
        !            95: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[out] D
        !            99: *> \verbatim
        !           100: *>          D is DOUBLE PRECISION array, dimension (NB)
        !           101: *>          The diagonal elements of the first NB rows and columns of
        !           102: *>          the reduced matrix.  D(i) = A(i,i).
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[out] E
        !           106: *> \verbatim
        !           107: *>          E is DOUBLE PRECISION array, dimension (NB)
        !           108: *>          The off-diagonal elements of the first NB rows and columns of
        !           109: *>          the reduced matrix.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[out] TAUQ
        !           113: *> \verbatim
        !           114: *>          TAUQ is COMPLEX*16 array dimension (NB)
        !           115: *>          The scalar factors of the elementary reflectors which
        !           116: *>          represent the unitary matrix Q. See Further Details.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[out] TAUP
        !           120: *> \verbatim
        !           121: *>          TAUP is COMPLEX*16 array, dimension (NB)
        !           122: *>          The scalar factors of the elementary reflectors which
        !           123: *>          represent the unitary matrix P. See Further Details.
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[out] X
        !           127: *> \verbatim
        !           128: *>          X is COMPLEX*16 array, dimension (LDX,NB)
        !           129: *>          The m-by-nb matrix X required to update the unreduced part
        !           130: *>          of A.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] LDX
        !           134: *> \verbatim
        !           135: *>          LDX is INTEGER
        !           136: *>          The leading dimension of the array X. LDX >= max(1,M).
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] Y
        !           140: *> \verbatim
        !           141: *>          Y is COMPLEX*16 array, dimension (LDY,NB)
        !           142: *>          The n-by-nb matrix Y required to update the unreduced part
        !           143: *>          of A.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[in] LDY
        !           147: *> \verbatim
        !           148: *>          LDY is INTEGER
        !           149: *>          The leading dimension of the array Y. LDY >= max(1,N).
        !           150: *> \endverbatim
        !           151: *
        !           152: *  Authors:
        !           153: *  ========
        !           154: *
        !           155: *> \author Univ. of Tennessee 
        !           156: *> \author Univ. of California Berkeley 
        !           157: *> \author Univ. of Colorado Denver 
        !           158: *> \author NAG Ltd. 
        !           159: *
        !           160: *> \date November 2011
        !           161: *
        !           162: *> \ingroup complex16OTHERauxiliary
        !           163: *
        !           164: *> \par Further Details:
        !           165: *  =====================
        !           166: *>
        !           167: *> \verbatim
        !           168: *>
        !           169: *>  The matrices Q and P are represented as products of elementary
        !           170: *>  reflectors:
        !           171: *>
        !           172: *>     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
        !           173: *>
        !           174: *>  Each H(i) and G(i) has the form:
        !           175: *>
        !           176: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
        !           177: *>
        !           178: *>  where tauq and taup are complex scalars, and v and u are complex
        !           179: *>  vectors.
        !           180: *>
        !           181: *>  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
        !           182: *>  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
        !           183: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           184: *>
        !           185: *>  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
        !           186: *>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
        !           187: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           188: *>
        !           189: *>  The elements of the vectors v and u together form the m-by-nb matrix
        !           190: *>  V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
        !           191: *>  the transformation to the unreduced part of the matrix, using a block
        !           192: *>  update of the form:  A := A - V*Y**H - X*U**H.
        !           193: *>
        !           194: *>  The contents of A on exit are illustrated by the following examples
        !           195: *>  with nb = 2:
        !           196: *>
        !           197: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
        !           198: *>
        !           199: *>    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
        !           200: *>    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
        !           201: *>    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
        !           202: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
        !           203: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
        !           204: *>    (  v1  v2  a   a   a  )
        !           205: *>
        !           206: *>  where a denotes an element of the original matrix which is unchanged,
        !           207: *>  vi denotes an element of the vector defining H(i), and ui an element
        !           208: *>  of the vector defining G(i).
        !           209: *> \endverbatim
        !           210: *>
        !           211: *  =====================================================================
1.1       bertrand  212:       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
                    213:      $                   LDY )
                    214: *
1.9     ! bertrand  215: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  216: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    217: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  218: *     November 2011
1.1       bertrand  219: *
                    220: *     .. Scalar Arguments ..
                    221:       INTEGER            LDA, LDX, LDY, M, N, NB
                    222: *     ..
                    223: *     .. Array Arguments ..
                    224:       DOUBLE PRECISION   D( * ), E( * )
                    225:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
                    226:      $                   Y( LDY, * )
                    227: *     ..
                    228: *
                    229: *  =====================================================================
                    230: *
                    231: *     .. Parameters ..
                    232:       COMPLEX*16         ZERO, ONE
                    233:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    234:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
                    235: *     ..
                    236: *     .. Local Scalars ..
                    237:       INTEGER            I
                    238:       COMPLEX*16         ALPHA
                    239: *     ..
                    240: *     .. External Subroutines ..
                    241:       EXTERNAL           ZGEMV, ZLACGV, ZLARFG, ZSCAL
                    242: *     ..
                    243: *     .. Intrinsic Functions ..
                    244:       INTRINSIC          MIN
                    245: *     ..
                    246: *     .. Executable Statements ..
                    247: *
                    248: *     Quick return if possible
                    249: *
                    250:       IF( M.LE.0 .OR. N.LE.0 )
                    251:      $   RETURN
                    252: *
                    253:       IF( M.GE.N ) THEN
                    254: *
                    255: *        Reduce to upper bidiagonal form
                    256: *
                    257:          DO 10 I = 1, NB
                    258: *
                    259: *           Update A(i:m,i)
                    260: *
                    261:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    262:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
                    263:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
                    264:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    265:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
                    266:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
                    267: *
                    268: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
                    269: *
                    270:             ALPHA = A( I, I )
                    271:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
                    272:      $                   TAUQ( I ) )
                    273:             D( I ) = ALPHA
                    274:             IF( I.LT.N ) THEN
                    275:                A( I, I ) = ONE
                    276: *
                    277: *              Compute Y(i+1:n,i)
                    278: *
                    279:                CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
                    280:      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
                    281:      $                     Y( I+1, I ), 1 )
                    282:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
                    283:      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
                    284:      $                     Y( 1, I ), 1 )
                    285:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    286:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    287:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
                    288:      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
                    289:      $                     Y( 1, I ), 1 )
                    290:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
                    291:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
                    292:      $                     Y( I+1, I ), 1 )
                    293:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    294: *
                    295: *              Update A(i,i+1:n)
                    296: *
                    297:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    298:                CALL ZLACGV( I, A( I, 1 ), LDA )
                    299:                CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
                    300:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
                    301:                CALL ZLACGV( I, A( I, 1 ), LDA )
                    302:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    303:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
                    304:      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
                    305:      $                     A( I, I+1 ), LDA )
                    306:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    307: *
                    308: *              Generate reflection P(i) to annihilate A(i,i+2:n)
                    309: *
                    310:                ALPHA = A( I, I+1 )
                    311:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
                    312:      $                      TAUP( I ) )
                    313:                E( I ) = ALPHA
                    314:                A( I, I+1 ) = ONE
                    315: *
                    316: *              Compute X(i+1:m,i)
                    317: *
                    318:                CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
                    319:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
                    320:                CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
                    321:      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
                    322:      $                     X( 1, I ), 1 )
                    323:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
                    324:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    325:                CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
                    326:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
                    327:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    328:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    329:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    330:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    331:             END IF
                    332:    10    CONTINUE
                    333:       ELSE
                    334: *
                    335: *        Reduce to lower bidiagonal form
                    336: *
                    337:          DO 20 I = 1, NB
                    338: *
                    339: *           Update A(i,i:n)
                    340: *
                    341:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    342:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    343:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
                    344:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
                    345:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    346:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    347:             CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
                    348:      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
                    349:      $                  LDA )
                    350:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    351: *
                    352: *           Generate reflection P(i) to annihilate A(i,i+1:n)
                    353: *
                    354:             ALPHA = A( I, I )
                    355:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
                    356:      $                   TAUP( I ) )
                    357:             D( I ) = ALPHA
                    358:             IF( I.LT.M ) THEN
                    359:                A( I, I ) = ONE
                    360: *
                    361: *              Compute X(i+1:m,i)
                    362: *
                    363:                CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
                    364:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
                    365:                CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
                    366:      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
                    367:      $                     X( 1, I ), 1 )
                    368:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    369:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    370:                CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
                    371:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
                    372:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    373:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    374:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    375:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    376: *
                    377: *              Update A(i+1:m,i)
                    378: *
                    379:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    380:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    381:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
                    382:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    383:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
                    384:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
                    385: *
                    386: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
                    387: *
                    388:                ALPHA = A( I+1, I )
                    389:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
                    390:      $                      TAUQ( I ) )
                    391:                E( I ) = ALPHA
                    392:                A( I+1, I ) = ONE
                    393: *
                    394: *              Compute Y(i+1:n,i)
                    395: *
                    396:                CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
                    397:      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
                    398:      $                     Y( I+1, I ), 1 )
                    399:                CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
                    400:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
                    401:      $                     Y( 1, I ), 1 )
                    402:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    403:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    404:                CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
                    405:      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
                    406:      $                     Y( 1, I ), 1 )
                    407:                CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
                    408:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
                    409:      $                     Y( I+1, I ), 1 )
                    410:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    411:             ELSE
                    412:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    413:             END IF
                    414:    20    CONTINUE
                    415:       END IF
                    416:       RETURN
                    417: *
                    418: *     End of ZLABRD
                    419: *
                    420:       END

CVSweb interface <joel.bertrand@systella.fr>