Annotation of rpl/lapack/lapack/zlabrd.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
                      2:      $                   LDY )
                      3: *
1.8     ! bertrand    4: *  -- LAPACK auxiliary routine (version 3.3.1) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand    7: *  -- April 2011                                                      --
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            LDA, LDX, LDY, M, N, NB
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   D( * ), E( * )
                     14:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
                     15:      $                   Y( LDY, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  ZLABRD reduces the first NB rows and columns of a complex general
                     22: *  m by n matrix A to upper or lower real bidiagonal form by a unitary
1.8     ! bertrand   23: *  transformation Q**H * A * P, and returns the matrices X and Y which
1.1       bertrand   24: *  are needed to apply the transformation to the unreduced part of A.
                     25: *
                     26: *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
                     27: *  bidiagonal form.
                     28: *
                     29: *  This is an auxiliary routine called by ZGEBRD
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  M       (input) INTEGER
                     35: *          The number of rows in the matrix A.
                     36: *
                     37: *  N       (input) INTEGER
                     38: *          The number of columns in the matrix A.
                     39: *
                     40: *  NB      (input) INTEGER
                     41: *          The number of leading rows and columns of A to be reduced.
                     42: *
                     43: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     44: *          On entry, the m by n general matrix to be reduced.
                     45: *          On exit, the first NB rows and columns of the matrix are
                     46: *          overwritten; the rest of the array is unchanged.
                     47: *          If m >= n, elements on and below the diagonal in the first NB
                     48: *            columns, with the array TAUQ, represent the unitary
                     49: *            matrix Q as a product of elementary reflectors; and
                     50: *            elements above the diagonal in the first NB rows, with the
                     51: *            array TAUP, represent the unitary matrix P as a product
                     52: *            of elementary reflectors.
                     53: *          If m < n, elements below the diagonal in the first NB
                     54: *            columns, with the array TAUQ, represent the unitary
                     55: *            matrix Q as a product of elementary reflectors, and
                     56: *            elements on and above the diagonal in the first NB rows,
                     57: *            with the array TAUP, represent the unitary matrix P as
                     58: *            a product of elementary reflectors.
                     59: *          See Further Details.
                     60: *
                     61: *  LDA     (input) INTEGER
                     62: *          The leading dimension of the array A.  LDA >= max(1,M).
                     63: *
                     64: *  D       (output) DOUBLE PRECISION array, dimension (NB)
                     65: *          The diagonal elements of the first NB rows and columns of
                     66: *          the reduced matrix.  D(i) = A(i,i).
                     67: *
                     68: *  E       (output) DOUBLE PRECISION array, dimension (NB)
                     69: *          The off-diagonal elements of the first NB rows and columns of
                     70: *          the reduced matrix.
                     71: *
                     72: *  TAUQ    (output) COMPLEX*16 array dimension (NB)
                     73: *          The scalar factors of the elementary reflectors which
                     74: *          represent the unitary matrix Q. See Further Details.
                     75: *
                     76: *  TAUP    (output) COMPLEX*16 array, dimension (NB)
                     77: *          The scalar factors of the elementary reflectors which
                     78: *          represent the unitary matrix P. See Further Details.
                     79: *
                     80: *  X       (output) COMPLEX*16 array, dimension (LDX,NB)
                     81: *          The m-by-nb matrix X required to update the unreduced part
                     82: *          of A.
                     83: *
                     84: *  LDX     (input) INTEGER
                     85: *          The leading dimension of the array X. LDX >= max(1,M).
                     86: *
                     87: *  Y       (output) COMPLEX*16 array, dimension (LDY,NB)
                     88: *          The n-by-nb matrix Y required to update the unreduced part
                     89: *          of A.
                     90: *
                     91: *  LDY     (input) INTEGER
                     92: *          The leading dimension of the array Y. LDY >= max(1,N).
                     93: *
                     94: *  Further Details
                     95: *  ===============
                     96: *
                     97: *  The matrices Q and P are represented as products of elementary
                     98: *  reflectors:
                     99: *
                    100: *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
                    101: *
                    102: *  Each H(i) and G(i) has the form:
                    103: *
1.8     ! bertrand  104: *     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
1.1       bertrand  105: *
                    106: *  where tauq and taup are complex scalars, and v and u are complex
                    107: *  vectors.
                    108: *
                    109: *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
                    110: *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
                    111: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    112: *
                    113: *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
                    114: *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
                    115: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    116: *
                    117: *  The elements of the vectors v and u together form the m-by-nb matrix
1.8     ! bertrand  118: *  V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
1.1       bertrand  119: *  the transformation to the unreduced part of the matrix, using a block
1.8     ! bertrand  120: *  update of the form:  A := A - V*Y**H - X*U**H.
1.1       bertrand  121: *
                    122: *  The contents of A on exit are illustrated by the following examples
                    123: *  with nb = 2:
                    124: *
                    125: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
                    126: *
                    127: *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
                    128: *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
                    129: *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
                    130: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    131: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    132: *    (  v1  v2  a   a   a  )
                    133: *
                    134: *  where a denotes an element of the original matrix which is unchanged,
                    135: *  vi denotes an element of the vector defining H(i), and ui an element
                    136: *  of the vector defining G(i).
                    137: *
                    138: *  =====================================================================
                    139: *
                    140: *     .. Parameters ..
                    141:       COMPLEX*16         ZERO, ONE
                    142:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    143:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
                    144: *     ..
                    145: *     .. Local Scalars ..
                    146:       INTEGER            I
                    147:       COMPLEX*16         ALPHA
                    148: *     ..
                    149: *     .. External Subroutines ..
                    150:       EXTERNAL           ZGEMV, ZLACGV, ZLARFG, ZSCAL
                    151: *     ..
                    152: *     .. Intrinsic Functions ..
                    153:       INTRINSIC          MIN
                    154: *     ..
                    155: *     .. Executable Statements ..
                    156: *
                    157: *     Quick return if possible
                    158: *
                    159:       IF( M.LE.0 .OR. N.LE.0 )
                    160:      $   RETURN
                    161: *
                    162:       IF( M.GE.N ) THEN
                    163: *
                    164: *        Reduce to upper bidiagonal form
                    165: *
                    166:          DO 10 I = 1, NB
                    167: *
                    168: *           Update A(i:m,i)
                    169: *
                    170:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    171:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
                    172:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
                    173:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    174:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
                    175:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
                    176: *
                    177: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
                    178: *
                    179:             ALPHA = A( I, I )
                    180:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
                    181:      $                   TAUQ( I ) )
                    182:             D( I ) = ALPHA
                    183:             IF( I.LT.N ) THEN
                    184:                A( I, I ) = ONE
                    185: *
                    186: *              Compute Y(i+1:n,i)
                    187: *
                    188:                CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
                    189:      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
                    190:      $                     Y( I+1, I ), 1 )
                    191:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
                    192:      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
                    193:      $                     Y( 1, I ), 1 )
                    194:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    195:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    196:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
                    197:      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
                    198:      $                     Y( 1, I ), 1 )
                    199:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
                    200:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
                    201:      $                     Y( I+1, I ), 1 )
                    202:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    203: *
                    204: *              Update A(i,i+1:n)
                    205: *
                    206:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    207:                CALL ZLACGV( I, A( I, 1 ), LDA )
                    208:                CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
                    209:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
                    210:                CALL ZLACGV( I, A( I, 1 ), LDA )
                    211:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    212:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
                    213:      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
                    214:      $                     A( I, I+1 ), LDA )
                    215:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    216: *
                    217: *              Generate reflection P(i) to annihilate A(i,i+2:n)
                    218: *
                    219:                ALPHA = A( I, I+1 )
                    220:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
                    221:      $                      TAUP( I ) )
                    222:                E( I ) = ALPHA
                    223:                A( I, I+1 ) = ONE
                    224: *
                    225: *              Compute X(i+1:m,i)
                    226: *
                    227:                CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
                    228:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
                    229:                CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
                    230:      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
                    231:      $                     X( 1, I ), 1 )
                    232:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
                    233:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    234:                CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
                    235:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
                    236:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    237:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    238:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    239:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    240:             END IF
                    241:    10    CONTINUE
                    242:       ELSE
                    243: *
                    244: *        Reduce to lower bidiagonal form
                    245: *
                    246:          DO 20 I = 1, NB
                    247: *
                    248: *           Update A(i,i:n)
                    249: *
                    250:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    251:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    252:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
                    253:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
                    254:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    255:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    256:             CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
                    257:      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
                    258:      $                  LDA )
                    259:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    260: *
                    261: *           Generate reflection P(i) to annihilate A(i,i+1:n)
                    262: *
                    263:             ALPHA = A( I, I )
                    264:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
                    265:      $                   TAUP( I ) )
                    266:             D( I ) = ALPHA
                    267:             IF( I.LT.M ) THEN
                    268:                A( I, I ) = ONE
                    269: *
                    270: *              Compute X(i+1:m,i)
                    271: *
                    272:                CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
                    273:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
                    274:                CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
                    275:      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
                    276:      $                     X( 1, I ), 1 )
                    277:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    278:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    279:                CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
                    280:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
                    281:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    282:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    283:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    284:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    285: *
                    286: *              Update A(i+1:m,i)
                    287: *
                    288:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    289:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    290:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
                    291:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    292:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
                    293:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
                    294: *
                    295: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
                    296: *
                    297:                ALPHA = A( I+1, I )
                    298:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
                    299:      $                      TAUQ( I ) )
                    300:                E( I ) = ALPHA
                    301:                A( I+1, I ) = ONE
                    302: *
                    303: *              Compute Y(i+1:n,i)
                    304: *
                    305:                CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
                    306:      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
                    307:      $                     Y( I+1, I ), 1 )
                    308:                CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
                    309:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
                    310:      $                     Y( 1, I ), 1 )
                    311:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    312:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    313:                CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
                    314:      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
                    315:      $                     Y( 1, I ), 1 )
                    316:                CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
                    317:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
                    318:      $                     Y( I+1, I ), 1 )
                    319:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    320:             ELSE
                    321:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    322:             END IF
                    323:    20    CONTINUE
                    324:       END IF
                    325:       RETURN
                    326: *
                    327: *     End of ZLABRD
                    328: *
                    329:       END

CVSweb interface <joel.bertrand@systella.fr>