Annotation of rpl/lapack/lapack/zlabrd.f, revision 1.18

1.12      bertrand    1: *> \brief \b ZLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZLABRD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlabrd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlabrd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlabrd.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
                     22: *                          LDY )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            LDA, LDX, LDY, M, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   D( * ), E( * )
                     29: *       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
                     30: *      $                   Y( LDY, * )
                     31: *       ..
1.16      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZLABRD reduces the first NB rows and columns of a complex general
                     40: *> m by n matrix A to upper or lower real bidiagonal form by a unitary
                     41: *> transformation Q**H * A * P, and returns the matrices X and Y which
                     42: *> are needed to apply the transformation to the unreduced part of A.
                     43: *>
                     44: *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
                     45: *> bidiagonal form.
                     46: *>
                     47: *> This is an auxiliary routine called by ZGEBRD
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] M
                     54: *> \verbatim
                     55: *>          M is INTEGER
                     56: *>          The number of rows in the matrix A.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] N
                     60: *> \verbatim
                     61: *>          N is INTEGER
                     62: *>          The number of columns in the matrix A.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] NB
                     66: *> \verbatim
                     67: *>          NB is INTEGER
                     68: *>          The number of leading rows and columns of A to be reduced.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in,out] A
                     72: *> \verbatim
                     73: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     74: *>          On entry, the m by n general matrix to be reduced.
                     75: *>          On exit, the first NB rows and columns of the matrix are
                     76: *>          overwritten; the rest of the array is unchanged.
                     77: *>          If m >= n, elements on and below the diagonal in the first NB
                     78: *>            columns, with the array TAUQ, represent the unitary
                     79: *>            matrix Q as a product of elementary reflectors; and
                     80: *>            elements above the diagonal in the first NB rows, with the
                     81: *>            array TAUP, represent the unitary matrix P as a product
                     82: *>            of elementary reflectors.
                     83: *>          If m < n, elements below the diagonal in the first NB
                     84: *>            columns, with the array TAUQ, represent the unitary
                     85: *>            matrix Q as a product of elementary reflectors, and
                     86: *>            elements on and above the diagonal in the first NB rows,
                     87: *>            with the array TAUP, represent the unitary matrix P as
                     88: *>            a product of elementary reflectors.
                     89: *>          See Further Details.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] LDA
                     93: *> \verbatim
                     94: *>          LDA is INTEGER
                     95: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[out] D
                     99: *> \verbatim
                    100: *>          D is DOUBLE PRECISION array, dimension (NB)
                    101: *>          The diagonal elements of the first NB rows and columns of
                    102: *>          the reduced matrix.  D(i) = A(i,i).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[out] E
                    106: *> \verbatim
                    107: *>          E is DOUBLE PRECISION array, dimension (NB)
                    108: *>          The off-diagonal elements of the first NB rows and columns of
                    109: *>          the reduced matrix.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] TAUQ
                    113: *> \verbatim
1.18    ! bertrand  114: *>          TAUQ is COMPLEX*16 array, dimension (NB)
1.9       bertrand  115: *>          The scalar factors of the elementary reflectors which
                    116: *>          represent the unitary matrix Q. See Further Details.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] TAUP
                    120: *> \verbatim
                    121: *>          TAUP is COMPLEX*16 array, dimension (NB)
                    122: *>          The scalar factors of the elementary reflectors which
                    123: *>          represent the unitary matrix P. See Further Details.
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[out] X
                    127: *> \verbatim
                    128: *>          X is COMPLEX*16 array, dimension (LDX,NB)
                    129: *>          The m-by-nb matrix X required to update the unreduced part
                    130: *>          of A.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] LDX
                    134: *> \verbatim
                    135: *>          LDX is INTEGER
                    136: *>          The leading dimension of the array X. LDX >= max(1,M).
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] Y
                    140: *> \verbatim
                    141: *>          Y is COMPLEX*16 array, dimension (LDY,NB)
                    142: *>          The n-by-nb matrix Y required to update the unreduced part
                    143: *>          of A.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] LDY
                    147: *> \verbatim
                    148: *>          LDY is INTEGER
                    149: *>          The leading dimension of the array Y. LDY >= max(1,N).
                    150: *> \endverbatim
                    151: *
                    152: *  Authors:
                    153: *  ========
                    154: *
1.16      bertrand  155: *> \author Univ. of Tennessee
                    156: *> \author Univ. of California Berkeley
                    157: *> \author Univ. of Colorado Denver
                    158: *> \author NAG Ltd.
1.9       bertrand  159: *
1.18    ! bertrand  160: *> \date June 2017
1.9       bertrand  161: *
                    162: *> \ingroup complex16OTHERauxiliary
                    163: *
                    164: *> \par Further Details:
                    165: *  =====================
                    166: *>
                    167: *> \verbatim
                    168: *>
                    169: *>  The matrices Q and P are represented as products of elementary
                    170: *>  reflectors:
                    171: *>
                    172: *>     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
                    173: *>
                    174: *>  Each H(i) and G(i) has the form:
                    175: *>
                    176: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
                    177: *>
                    178: *>  where tauq and taup are complex scalars, and v and u are complex
                    179: *>  vectors.
                    180: *>
                    181: *>  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
                    182: *>  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
                    183: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    184: *>
                    185: *>  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
                    186: *>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
                    187: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    188: *>
                    189: *>  The elements of the vectors v and u together form the m-by-nb matrix
                    190: *>  V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
                    191: *>  the transformation to the unreduced part of the matrix, using a block
                    192: *>  update of the form:  A := A - V*Y**H - X*U**H.
                    193: *>
                    194: *>  The contents of A on exit are illustrated by the following examples
                    195: *>  with nb = 2:
                    196: *>
                    197: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
                    198: *>
                    199: *>    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
                    200: *>    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
                    201: *>    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
                    202: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    203: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    204: *>    (  v1  v2  a   a   a  )
                    205: *>
                    206: *>  where a denotes an element of the original matrix which is unchanged,
                    207: *>  vi denotes an element of the vector defining H(i), and ui an element
                    208: *>  of the vector defining G(i).
                    209: *> \endverbatim
                    210: *>
                    211: *  =====================================================================
1.1       bertrand  212:       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
                    213:      $                   LDY )
                    214: *
1.18    ! bertrand  215: *  -- LAPACK auxiliary routine (version 3.7.1) --
1.1       bertrand  216: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    217: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.18    ! bertrand  218: *     June 2017
1.1       bertrand  219: *
                    220: *     .. Scalar Arguments ..
                    221:       INTEGER            LDA, LDX, LDY, M, N, NB
                    222: *     ..
                    223: *     .. Array Arguments ..
                    224:       DOUBLE PRECISION   D( * ), E( * )
                    225:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
                    226:      $                   Y( LDY, * )
                    227: *     ..
                    228: *
                    229: *  =====================================================================
                    230: *
                    231: *     .. Parameters ..
                    232:       COMPLEX*16         ZERO, ONE
                    233:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    234:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
                    235: *     ..
                    236: *     .. Local Scalars ..
                    237:       INTEGER            I
                    238:       COMPLEX*16         ALPHA
                    239: *     ..
                    240: *     .. External Subroutines ..
                    241:       EXTERNAL           ZGEMV, ZLACGV, ZLARFG, ZSCAL
                    242: *     ..
                    243: *     .. Intrinsic Functions ..
                    244:       INTRINSIC          MIN
                    245: *     ..
                    246: *     .. Executable Statements ..
                    247: *
                    248: *     Quick return if possible
                    249: *
                    250:       IF( M.LE.0 .OR. N.LE.0 )
                    251:      $   RETURN
                    252: *
                    253:       IF( M.GE.N ) THEN
                    254: *
                    255: *        Reduce to upper bidiagonal form
                    256: *
                    257:          DO 10 I = 1, NB
                    258: *
                    259: *           Update A(i:m,i)
                    260: *
                    261:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    262:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
                    263:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
                    264:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    265:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
                    266:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
                    267: *
                    268: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
                    269: *
                    270:             ALPHA = A( I, I )
                    271:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
                    272:      $                   TAUQ( I ) )
                    273:             D( I ) = ALPHA
                    274:             IF( I.LT.N ) THEN
                    275:                A( I, I ) = ONE
                    276: *
                    277: *              Compute Y(i+1:n,i)
                    278: *
                    279:                CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
                    280:      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
                    281:      $                     Y( I+1, I ), 1 )
                    282:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
                    283:      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
                    284:      $                     Y( 1, I ), 1 )
                    285:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    286:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    287:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
                    288:      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
                    289:      $                     Y( 1, I ), 1 )
                    290:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
                    291:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
                    292:      $                     Y( I+1, I ), 1 )
                    293:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    294: *
                    295: *              Update A(i,i+1:n)
                    296: *
                    297:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    298:                CALL ZLACGV( I, A( I, 1 ), LDA )
                    299:                CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
                    300:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
                    301:                CALL ZLACGV( I, A( I, 1 ), LDA )
                    302:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    303:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
                    304:      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
                    305:      $                     A( I, I+1 ), LDA )
                    306:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    307: *
                    308: *              Generate reflection P(i) to annihilate A(i,i+2:n)
                    309: *
                    310:                ALPHA = A( I, I+1 )
                    311:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
                    312:      $                      TAUP( I ) )
                    313:                E( I ) = ALPHA
                    314:                A( I, I+1 ) = ONE
                    315: *
                    316: *              Compute X(i+1:m,i)
                    317: *
                    318:                CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
                    319:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
                    320:                CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
                    321:      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
                    322:      $                     X( 1, I ), 1 )
                    323:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
                    324:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    325:                CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
                    326:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
                    327:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    328:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    329:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    330:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    331:             END IF
                    332:    10    CONTINUE
                    333:       ELSE
                    334: *
                    335: *        Reduce to lower bidiagonal form
                    336: *
                    337:          DO 20 I = 1, NB
                    338: *
                    339: *           Update A(i,i:n)
                    340: *
                    341:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    342:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    343:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
                    344:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
                    345:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    346:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    347:             CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
                    348:      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
                    349:      $                  LDA )
                    350:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
                    351: *
                    352: *           Generate reflection P(i) to annihilate A(i,i+1:n)
                    353: *
                    354:             ALPHA = A( I, I )
                    355:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
                    356:      $                   TAUP( I ) )
                    357:             D( I ) = ALPHA
                    358:             IF( I.LT.M ) THEN
                    359:                A( I, I ) = ONE
                    360: *
                    361: *              Compute X(i+1:m,i)
                    362: *
                    363:                CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
                    364:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
                    365:                CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
                    366:      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
                    367:      $                     X( 1, I ), 1 )
                    368:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    369:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    370:                CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
                    371:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
                    372:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    373:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    374:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    375:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    376: *
                    377: *              Update A(i+1:m,i)
                    378: *
                    379:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    380:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    381:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
                    382:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
                    383:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
                    384:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
                    385: *
                    386: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
                    387: *
                    388:                ALPHA = A( I+1, I )
                    389:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
                    390:      $                      TAUQ( I ) )
                    391:                E( I ) = ALPHA
                    392:                A( I+1, I ) = ONE
                    393: *
                    394: *              Compute Y(i+1:n,i)
                    395: *
                    396:                CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
                    397:      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
                    398:      $                     Y( I+1, I ), 1 )
                    399:                CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
                    400:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
                    401:      $                     Y( 1, I ), 1 )
                    402:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    403:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    404:                CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
                    405:      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
                    406:      $                     Y( 1, I ), 1 )
                    407:                CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
                    408:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
                    409:      $                     Y( I+1, I ), 1 )
                    410:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    411:             ELSE
                    412:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    413:             END IF
                    414:    20    CONTINUE
                    415:       END IF
                    416:       RETURN
                    417: *
                    418: *     End of ZLABRD
                    419: *
                    420:       END

CVSweb interface <joel.bertrand@systella.fr>