Annotation of rpl/lapack/lapack/zlabrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
        !             2:      $                   LDY )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            LDA, LDX, LDY, M, N, NB
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   D( * ), E( * )
        !            14:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
        !            15:      $                   Y( LDY, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  ZLABRD reduces the first NB rows and columns of a complex general
        !            22: *  m by n matrix A to upper or lower real bidiagonal form by a unitary
        !            23: *  transformation Q' * A * P, and returns the matrices X and Y which
        !            24: *  are needed to apply the transformation to the unreduced part of A.
        !            25: *
        !            26: *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
        !            27: *  bidiagonal form.
        !            28: *
        !            29: *  This is an auxiliary routine called by ZGEBRD
        !            30: *
        !            31: *  Arguments
        !            32: *  =========
        !            33: *
        !            34: *  M       (input) INTEGER
        !            35: *          The number of rows in the matrix A.
        !            36: *
        !            37: *  N       (input) INTEGER
        !            38: *          The number of columns in the matrix A.
        !            39: *
        !            40: *  NB      (input) INTEGER
        !            41: *          The number of leading rows and columns of A to be reduced.
        !            42: *
        !            43: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            44: *          On entry, the m by n general matrix to be reduced.
        !            45: *          On exit, the first NB rows and columns of the matrix are
        !            46: *          overwritten; the rest of the array is unchanged.
        !            47: *          If m >= n, elements on and below the diagonal in the first NB
        !            48: *            columns, with the array TAUQ, represent the unitary
        !            49: *            matrix Q as a product of elementary reflectors; and
        !            50: *            elements above the diagonal in the first NB rows, with the
        !            51: *            array TAUP, represent the unitary matrix P as a product
        !            52: *            of elementary reflectors.
        !            53: *          If m < n, elements below the diagonal in the first NB
        !            54: *            columns, with the array TAUQ, represent the unitary
        !            55: *            matrix Q as a product of elementary reflectors, and
        !            56: *            elements on and above the diagonal in the first NB rows,
        !            57: *            with the array TAUP, represent the unitary matrix P as
        !            58: *            a product of elementary reflectors.
        !            59: *          See Further Details.
        !            60: *
        !            61: *  LDA     (input) INTEGER
        !            62: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            63: *
        !            64: *  D       (output) DOUBLE PRECISION array, dimension (NB)
        !            65: *          The diagonal elements of the first NB rows and columns of
        !            66: *          the reduced matrix.  D(i) = A(i,i).
        !            67: *
        !            68: *  E       (output) DOUBLE PRECISION array, dimension (NB)
        !            69: *          The off-diagonal elements of the first NB rows and columns of
        !            70: *          the reduced matrix.
        !            71: *
        !            72: *  TAUQ    (output) COMPLEX*16 array dimension (NB)
        !            73: *          The scalar factors of the elementary reflectors which
        !            74: *          represent the unitary matrix Q. See Further Details.
        !            75: *
        !            76: *  TAUP    (output) COMPLEX*16 array, dimension (NB)
        !            77: *          The scalar factors of the elementary reflectors which
        !            78: *          represent the unitary matrix P. See Further Details.
        !            79: *
        !            80: *  X       (output) COMPLEX*16 array, dimension (LDX,NB)
        !            81: *          The m-by-nb matrix X required to update the unreduced part
        !            82: *          of A.
        !            83: *
        !            84: *  LDX     (input) INTEGER
        !            85: *          The leading dimension of the array X. LDX >= max(1,M).
        !            86: *
        !            87: *  Y       (output) COMPLEX*16 array, dimension (LDY,NB)
        !            88: *          The n-by-nb matrix Y required to update the unreduced part
        !            89: *          of A.
        !            90: *
        !            91: *  LDY     (input) INTEGER
        !            92: *          The leading dimension of the array Y. LDY >= max(1,N).
        !            93: *
        !            94: *  Further Details
        !            95: *  ===============
        !            96: *
        !            97: *  The matrices Q and P are represented as products of elementary
        !            98: *  reflectors:
        !            99: *
        !           100: *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
        !           101: *
        !           102: *  Each H(i) and G(i) has the form:
        !           103: *
        !           104: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
        !           105: *
        !           106: *  where tauq and taup are complex scalars, and v and u are complex
        !           107: *  vectors.
        !           108: *
        !           109: *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
        !           110: *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
        !           111: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           112: *
        !           113: *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
        !           114: *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
        !           115: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           116: *
        !           117: *  The elements of the vectors v and u together form the m-by-nb matrix
        !           118: *  V and the nb-by-n matrix U' which are needed, with X and Y, to apply
        !           119: *  the transformation to the unreduced part of the matrix, using a block
        !           120: *  update of the form:  A := A - V*Y' - X*U'.
        !           121: *
        !           122: *  The contents of A on exit are illustrated by the following examples
        !           123: *  with nb = 2:
        !           124: *
        !           125: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
        !           126: *
        !           127: *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
        !           128: *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
        !           129: *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
        !           130: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
        !           131: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
        !           132: *    (  v1  v2  a   a   a  )
        !           133: *
        !           134: *  where a denotes an element of the original matrix which is unchanged,
        !           135: *  vi denotes an element of the vector defining H(i), and ui an element
        !           136: *  of the vector defining G(i).
        !           137: *
        !           138: *  =====================================================================
        !           139: *
        !           140: *     .. Parameters ..
        !           141:       COMPLEX*16         ZERO, ONE
        !           142:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
        !           143:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
        !           144: *     ..
        !           145: *     .. Local Scalars ..
        !           146:       INTEGER            I
        !           147:       COMPLEX*16         ALPHA
        !           148: *     ..
        !           149: *     .. External Subroutines ..
        !           150:       EXTERNAL           ZGEMV, ZLACGV, ZLARFG, ZSCAL
        !           151: *     ..
        !           152: *     .. Intrinsic Functions ..
        !           153:       INTRINSIC          MIN
        !           154: *     ..
        !           155: *     .. Executable Statements ..
        !           156: *
        !           157: *     Quick return if possible
        !           158: *
        !           159:       IF( M.LE.0 .OR. N.LE.0 )
        !           160:      $   RETURN
        !           161: *
        !           162:       IF( M.GE.N ) THEN
        !           163: *
        !           164: *        Reduce to upper bidiagonal form
        !           165: *
        !           166:          DO 10 I = 1, NB
        !           167: *
        !           168: *           Update A(i:m,i)
        !           169: *
        !           170:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
        !           171:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
        !           172:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
        !           173:             CALL ZLACGV( I-1, Y( I, 1 ), LDY )
        !           174:             CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
        !           175:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
        !           176: *
        !           177: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
        !           178: *
        !           179:             ALPHA = A( I, I )
        !           180:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
        !           181:      $                   TAUQ( I ) )
        !           182:             D( I ) = ALPHA
        !           183:             IF( I.LT.N ) THEN
        !           184:                A( I, I ) = ONE
        !           185: *
        !           186: *              Compute Y(i+1:n,i)
        !           187: *
        !           188:                CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
        !           189:      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
        !           190:      $                     Y( I+1, I ), 1 )
        !           191:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
        !           192:      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
        !           193:      $                     Y( 1, I ), 1 )
        !           194:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
        !           195:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
        !           196:                CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
        !           197:      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
        !           198:      $                     Y( 1, I ), 1 )
        !           199:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
        !           200:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
        !           201:      $                     Y( I+1, I ), 1 )
        !           202:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
        !           203: *
        !           204: *              Update A(i,i+1:n)
        !           205: *
        !           206:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
        !           207:                CALL ZLACGV( I, A( I, 1 ), LDA )
        !           208:                CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
        !           209:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
        !           210:                CALL ZLACGV( I, A( I, 1 ), LDA )
        !           211:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
        !           212:                CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
        !           213:      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
        !           214:      $                     A( I, I+1 ), LDA )
        !           215:                CALL ZLACGV( I-1, X( I, 1 ), LDX )
        !           216: *
        !           217: *              Generate reflection P(i) to annihilate A(i,i+2:n)
        !           218: *
        !           219:                ALPHA = A( I, I+1 )
        !           220:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
        !           221:      $                      TAUP( I ) )
        !           222:                E( I ) = ALPHA
        !           223:                A( I, I+1 ) = ONE
        !           224: *
        !           225: *              Compute X(i+1:m,i)
        !           226: *
        !           227:                CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
        !           228:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
        !           229:                CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
        !           230:      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
        !           231:      $                     X( 1, I ), 1 )
        !           232:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
        !           233:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
        !           234:                CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
        !           235:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
        !           236:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
        !           237:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
        !           238:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
        !           239:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
        !           240:             END IF
        !           241:    10    CONTINUE
        !           242:       ELSE
        !           243: *
        !           244: *        Reduce to lower bidiagonal form
        !           245: *
        !           246:          DO 20 I = 1, NB
        !           247: *
        !           248: *           Update A(i,i:n)
        !           249: *
        !           250:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
        !           251:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
        !           252:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
        !           253:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
        !           254:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
        !           255:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
        !           256:             CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
        !           257:      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
        !           258:      $                  LDA )
        !           259:             CALL ZLACGV( I-1, X( I, 1 ), LDX )
        !           260: *
        !           261: *           Generate reflection P(i) to annihilate A(i,i+1:n)
        !           262: *
        !           263:             ALPHA = A( I, I )
        !           264:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
        !           265:      $                   TAUP( I ) )
        !           266:             D( I ) = ALPHA
        !           267:             IF( I.LT.M ) THEN
        !           268:                A( I, I ) = ONE
        !           269: *
        !           270: *              Compute X(i+1:m,i)
        !           271: *
        !           272:                CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
        !           273:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
        !           274:                CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
        !           275:      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
        !           276:      $                     X( 1, I ), 1 )
        !           277:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
        !           278:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
        !           279:                CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
        !           280:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
        !           281:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
        !           282:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
        !           283:                CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
        !           284:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
        !           285: *
        !           286: *              Update A(i+1:m,i)
        !           287: *
        !           288:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
        !           289:                CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
        !           290:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
        !           291:                CALL ZLACGV( I-1, Y( I, 1 ), LDY )
        !           292:                CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
        !           293:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
        !           294: *
        !           295: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
        !           296: *
        !           297:                ALPHA = A( I+1, I )
        !           298:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
        !           299:      $                      TAUQ( I ) )
        !           300:                E( I ) = ALPHA
        !           301:                A( I+1, I ) = ONE
        !           302: *
        !           303: *              Compute Y(i+1:n,i)
        !           304: *
        !           305:                CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
        !           306:      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
        !           307:      $                     Y( I+1, I ), 1 )
        !           308:                CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
        !           309:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
        !           310:      $                     Y( 1, I ), 1 )
        !           311:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
        !           312:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
        !           313:                CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
        !           314:      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
        !           315:      $                     Y( 1, I ), 1 )
        !           316:                CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
        !           317:      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
        !           318:      $                     Y( I+1, I ), 1 )
        !           319:                CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
        !           320:             ELSE
        !           321:                CALL ZLACGV( N-I+1, A( I, I ), LDA )
        !           322:             END IF
        !           323:    20    CONTINUE
        !           324:       END IF
        !           325:       RETURN
        !           326: *
        !           327: *     End of ZLABRD
        !           328: *
        !           329:       END

CVSweb interface <joel.bertrand@systella.fr>